碩士論文
Master Thesis

指導教授：閻立平 博士
Advisor: Lipyng Yan, Ph. D.

固態發酵與深層培養桑黃菌 Phellinus linteus 萃取物抗氧化及抗腫瘤活性之研究
Antioxidant and antitumor activities of extracts from solid-state and submerged cultures by Phellinus linteus

研究生：郭俊麟 撰
Graduate Student: Chun-Lin Kuo

中華民國一○一年四月
April, 2012
謝誌

研修碩士學位期間，感謝恩師閻立平博士於實驗研究及功課學業上給予學生許多的指導與照顧，使實驗與論文得以順利進行。於論文撰寫期間，感謝老師細心的審閱及指正，使得論文可以順利的完成和通過學位口試。恩師的鼓勵與教誨，學生會永記在心，師恩浩蕩，對恩師致上最深的謝意。

初稿完成，承蒙本研究所教授梁志弘博士擔任學生碩士論文口試招集人及靜宜大學食品營養學系王培銘博士撥冗審閱，給予許多寶貴的意見和指導，使學生的論文能更加完善，在此致上萬分的謝意。

在學期間，感謝系辦公室王琴助理及佩玲助教在研究所生涯中的幫忙與協助。此外，首先感謝在我剛進入研究室時，給予我最多指導及幫忙的研究室學長子瑋及郅任，帶領我熟悉微生物實驗室的環境、實驗方法及儀器的操作，以及其他實驗室學長姊的幫忙與鼓勵。感謝本屆的同窗好友們建廷、希奇、瑄閔、梵萱、佳華、鈺馨、冠閔、佳伶、如裕、怡慧、天成、菁羽及曜寬等人的幫忙與陪伴，在兩年多的研究生生活裡我們共同的奮鬥及互相的幫助；另外感謝學妹鋼欣在細胞實驗上的幫助，使我的實驗可以順利完成；感謝學弟妹鈺欣、豐敏、哲瑜、孟蓉、哲偉、書平、偉珊、凱琳的協助與陪伴，使我的研究所生活充滿歡樂及美好的回憶。

最後，感謝一直在背後支持我的家人們，尤其感謝父母親多年來的支持關心與照顧，讓我可以無後顧之憂的完成學業，謹將此論文獻給我最親愛的家人，一起分享我的成長與喜悅。

郭俊麟 謹於
東海大學食品科學研究所
中華民國一○一年四月
目 錄

摘 要 .................................................................................................................. I
Abstract............................................................................................................... III

壹、 前言 .......................................................................................................... 1

貳、 文獻回顧 ................................................................................................... 2

一、 桑黃菌簡介 ............................................................................................. 2
   （一） 桑黃菌之分類命名 ........................................................................... 2

二、 桑黃菌化學組成及其藥理功能 ............................................................. 6
   （一） 桑黃菌的化學成分 .......................................................................... 6
   （二） 桑黃菌的藥理功能 ......................................................................... 8
   （三） 桑黃菌之藥用開發與未來展望 ..................................................... 15

三、 藥用菇類多醣簡介 ................................................................................. 16
   （一） 多醣體之結構 ............................................................................... 16
   （二） β-D-葡聚醣類(β-D-glucan)之免疫活性 ..................................... 18

四、 固態發酵製程之簡介 ............................................................................. 20
   （一） 固態發酵之特性 .......................................................................... 20
   （二） 固態發酵生物量之測定 ................................................................. 24

參、 材料與方法 ............................................................................................. 27

一、 試驗材料 ................................................................................................. 27
(一) 試驗菌種

(二) 測試細胞株

(三) 固態培養基質

(四) 培養基

(五) 重要藥品

二、試驗儀器

三、試驗方法

(一) 試驗流程

(二) 菌種保存

(三) 菌種活化

(四) 種菌培養

(五) 種菌懸浮液之製作

(六) 固態培養基試驗

(七) 穀物基質溶解度、膨潤力及吸水指標之測定

(八) 發酵槽試驗

(九) 抑制癌細胞生長能力測定

四、分析方法

(一) 固態培養桑黃菌之生物質（biomass）測定

(二) pH 值之測定
(三) 固態培養多醣體含量之測定.........................................................44
(四) 多醣體分子量之測定...............................................................45
(五) 多醣體中 β-(1→3)-D-glucan 相對含量測定 .........................47
(六) 抑菌能力之測定.................................................................48
(七) 抗氧化力之測定.................................................................51
(八) 癌細胞存活率試驗...............................................................55
(九) 統計分析..............................................................................57

肆、結果與討論.........................................................................58

一、培養桑黃菌之固態基質種類試驗........................................58
二、最適培養桑黃菌之固態發酵培養條件試驗..........................68
  (一) 最適培養溫度探討.............................................................68
  (二) 最適培養基質水分含量探討...............................................68
  (三) 最適培養接菌含量探討.....................................................70
  (四) 最適培養起始 pH 值探討....................................................73
  (五) 最適培養碳源種類探討.....................................................75
  (六) 最適培養氮源種類探討.....................................................77
  (七) 最適培養無機鹽類種類探討...............................................77
  (八) 最適培養生長因子種類探討...............................................79
  (九) 最適培養條件對桑黃菌絲體及多醣體生成之影響.............83
三、多醣體分子量之測定………………………………………………85

四、β-(1→3)-D-glucan 相對含量測定………………………………90

五、抑菌能力之測定…………………………………………………92

六、抗氧化力之測定…………………………………………………93

(一) DPPH 自由基清除能力測定…………………………………94

(二) 鐵合亞鐵離子能力測定………………………………………100

(三) 還原力測定…………………………………………………104

(四) 總抗氧化力測定………………………………………………108

七、癌細胞存活率試驗………………………………………………112

(一) 樣品萃取物對人類肺腺癌細胞（A-549）存活率之影響112

(二) 樣品萃取物對人類乳癌細胞（MCF-7）存活率之影響…118

(三) 樣品萃取物對人類肺肝癌細胞（HepG2）存活率之影響124

伍、結論……………………………………………………………131

陸、參考文獻………………………………………………………134

柒、附錄…………………………………………………………146
### 表目錄

<table>
<thead>
<tr>
<th>表目</th>
<th>内容</th>
<th>页码</th>
</tr>
</thead>
<tbody>
<tr>
<td>表一</td>
<td>桑黃菌粗多醣體中胺基酸和碳水化合物組成</td>
<td>7</td>
</tr>
<tr>
<td>表二</td>
<td>與自由基相關的臨床疾病</td>
<td>12</td>
</tr>
<tr>
<td>表三</td>
<td>固態發酵與液態發酵特點的比較</td>
<td>22</td>
</tr>
<tr>
<td>表四</td>
<td>薏仁、黑豆和燕麥基質於 121℃之吸水性質</td>
<td>67</td>
</tr>
<tr>
<td>表五</td>
<td>不同培養溫度對桑黃菌（<em>Phellinus linteus</em>) 於燕麥於固態培養期間（培養 12 天）生物質、多醣體及最終 pH 之影響</td>
<td>69</td>
</tr>
<tr>
<td>表六</td>
<td>不同水添加量對桑黃菌（<em>Phellinus linteus</em>) 於燕麥於固態培養期間（培養 12 天）生物質、多醣體及最終 pH 之影響</td>
<td>71</td>
</tr>
<tr>
<td>表七</td>
<td>不同接菌體積對桑黃菌（<em>Phellinus linteus</em>) 於燕麥於固態培養期間（培養 12 天）生物質、多醣體及最終 pH 之影響</td>
<td>72</td>
</tr>
<tr>
<td>表八</td>
<td>起始 pH 值（4-8）對桑黃菌（<em>Phellinus linteus</em>) 於燕麥於固態培養期間（培養 12 天）生物質、多醣體及最終 pH 之影響</td>
<td>74</td>
</tr>
<tr>
<td>表九</td>
<td>碳源對桑黃菌（<em>Phellinus linteus</em>) 於燕麥於固態培養期間（培養 12 天）生物質、多醣體及最終 pH 之影響</td>
<td>76</td>
</tr>
<tr>
<td>表十</td>
<td>氮源對桑黃菌（<em>Phellinus linteus</em>) 於燕麥於固態培養期間（培養 12 天）生物質、多醣體及最終 pH 之影響</td>
<td>78</td>
</tr>
<tr>
<td>表十一</td>
<td>無機鹽類對桑黃菌（<em>Phellinus linteus</em>) 於燕麥於固態培養</td>
<td></td>
</tr>
</tbody>
</table>
期間(培養 12 天)生物質、多醣體及最終 pH 之影響 ......81

表十二 生長因子對桑黃菌（Phellinus linteus）於燕麥固態培養期間（培養 12 天）生物質、多醣體及最終 pH 之影響.........82

表十三 膠體滲透層析法不同分子量多醣標準品（α-D-葡聚糖）之滯留時間 .................................................................87

表十四 膠體滲透層析法測定燕麥基質、桑黃燕麥及氣舉式發酵液之多醣體分子量 ..........................................................88

表十五 燕麥基質、桑黃燕麥及氣舉式發酵槽發酵液中多醣之 β-(1 →3)-D-glucan 相對含量 ..........................................................91

表十六 燕麥基質、桑黃燕麥和氣舉式發酵槽發酵液粉末熱水及乙醇萃取物 DPPH 自由基清除能力之 IC₅₀ ..........................97

表十七 燕麥基質、桑黃燕麥和氣舉式發酵槽發酵液粉末之熱水及乙醇萃取率 .................................................................98

表十八 燕麥基質、桑黃燕麥和氣泡式發酵槽發酵液粉末抗氧化性質之 IC₅₀ ...........................................................................99

表十九 燕麥基質、桑黃燕麥和氣舉式發酵槽發酵液粉末熱水及乙醇萃取物螯合亞鐵離子能力之 IC₅₀ ......................103

表二十 燕麥基質、桑黃燕麥和氣泡發酵槽發酵液粉末熱水及乙醇萃取物還原能力之 IC₅₀ .................................107
表二十一 燕麥基質、桑黃燕麥和氣泡式發酵槽發酵液粉末熱水及乙醇萃取物總抗氧化能力之 IC_{50} ...............................111

表二十二 燕麥基質、桑黃燕麥和氣泡式發酵槽發酵液之熱水及乙醇萃取物（濃度為 1000μg/ml）對肺腺癌細胞（A-549）存活率之影響..................................................116

表二十三 燕麥基質、桑黃燕麥和氣泡式發酵槽發酵液之熱水及乙醇萃取物（濃度為 1000μg/ml）對乳癌細胞（MCF-7）存活率之影響..................................................122

表二十四 燕麥基質、桑黃燕麥和氣泡式發酵槽發酵液之熱水及乙醇萃取物（濃度為 1000μg/ml）對肝癌細胞（HepG2）存活率之影響..................................................129
圖目錄

圖一  桑黃菌之分類。 ................................................................. 3

圖二  桑黃菌之外觀形態。 .......................................................... 5

圖三  野生桑黃熱水萃取液誘導癌細胞自行毀滅實驗結果。 ........ 10

圖四  桑黃的免疫作用機制。 ...................................................... 14

圖五  具抗腫瘤活性的 β-(1→6)分支 β-(1→3)-D-葡聚醣結構。 .... 17

圖六  X 射線衍射測定之 β-(1→3)-D-葡聚醣結晶結構。 ................. 17

圖七  香菇多醣(lentinan 對)寄主所產生的免疫反應。 ................. 19

圖八  桑黃菌（Phellinus linteus）於薏仁固態培養發酵期間（30 °C / 
       20 天）生物質及最終 pH 之變化。 ........................................ 59

圖九  桑黃菌（Phellinus linteus）於黑豆固態培養發酵期間（30 °C / 
       20 天）生物質及最終 pH 之變化。 ........................................ 60

圖十  桑黃菌（Phellinus linteus）於燕麥固態培養發酵期間（30 °C / 
       20 天）生物質及最終 pH 之變化。 ........................................ 61

圖十一 桑黃菌（Phellinus linteus）於薏仁固態培養發酵期間（30 °C /20 
       天）之菌絲體生長情形。 ...................................................... 64

圖十二 桑黃菌（Phellinus linteus）於黑豆固態培養發酵期間（30 °C /20 
       天）之菌絲體生長情形。 ...................................................... 65
圖十三 桑黃菌（*Phellinus linteus*）於燕麥固態培養發酵期間（30 °C/20天）之菌絲體生長情形。.........................................................66

圖十四 桑黃菌（*Phellinus linteus*）於燕麥於固態培養發酵（30°C/20天）生物質、多醣體及最終 pH 之變化。.........................84

圖十五 燕麥基質、桑黃燕麥及氣舉式發酵槽發酵液多醣體膠體滲透層析之分子量圖譜。（a）燕麥基質，（b）桑黃燕麥，（c）氣舉式發酵槽。.................................................................89

圖十六 燕麥基質、桑黃燕麥和氣舉式發酵槽發酵液粉末熱水及乙醇萃取物 DPPH 自由基清除能力。.................................96

圖十七 燕麥基質、桑黃燕麥和氣舉式發酵槽發酵液粉末熱水及乙醇萃取物之螯合亞鐵離子能力。.................................102

圖十八 燕麥基質、桑黃燕麥和氣舉式發酵槽發酵液粉末熱水及乙醇萃取物之還原能力。.................................106

圖十九 燕麥基質、桑黃燕麥和氣舉式發酵槽發酵液粉末熱水及乙醇萃取物之總抗氧化能力。.................................110

圖二十 不同濃度燕麥基質、桑黃燕麥和氣舉式發酵槽發酵液之熱水萃取物對肺腺癌細胞（A-549）存活率之影響。...........114

圖二十一 不同濃度燕麥基質、桑黃燕麥和氣舉式發酵槽發酵液之乙醇萃取物對肺腺癌細胞（A-549）存活率之影響。...........115
圖二十二 肺腺癌細胞 (A-549) 經桑黃燕麥熱水萃取物處理 (1000μg/ml，
5% CO₂/37℃/48hr) 後之細胞生長情形。 ..............................117

圖二十三 不同濃度燕麥基質、桑黃燕麥和氣舉式發酵槽發酵液之熱水
萃取物對乳癌細胞 (MCF-7) 存活率之影響。 .........................120

圖二十四 不同濃度燕麥基質、桑黃燕麥和氣舉式發酵槽發酵液之乙醇
萃取物對乳癌細胞 (MCF-7) 存活率之影響。 .........................121

圖二十五 乳癌細胞 (MCF-7) 經桑黃燕麥熱水萃取物處理 (1000μg/ml，
5% CO₂/37℃/48hr) 後之細胞生長情形。 ..............................120

圖二十六 不同濃度燕麥基質、桑黃燕麥和氣舉式發酵槽發酵液之熱水
萃取物對肝癌細胞 (HepG2) 存活率之影響。 .........................127

圖二十七 不同濃度燕麥基質、桑黃燕麥和氣舉式發酵槽發酵液之乙醇
萃取物對肝癌細胞 (HepG2) 存活率之影響。 .........................128

圖二十八 肝癌細胞 (HepG2) 經桑黃燕麥熱水萃取物處理 (1000μg/ml，
5% CO₂/37℃/48hr) 後之細胞生長情形。 ..............................130
附圖目錄

附圖一  Elson-Morgan 法之葡萄糖胺標準曲線。..............................147
附圖二  菌絲體乾重之標準曲線。.................................................148
附圖三  酚硫酸法之葡萄糖標準曲線。..............................................149
附圖四  多醣分子量之標準曲線。.....................................................150
附圖五  測定 β-(1→3)-D-glucan 相對含量之 laminarin 標準曲。151
附圖六  Ampicillin 對病原菌 Bacillus cereus 抑菌環之標準曲線。
........................................................................................................152
附圖七  Ampicillin 對病原菌 Pseudomonas aeruginosa 抑菌環之標
準曲線。..........................................................................................153
附圖八  Ampicillin 對病原菌 Escherichia coli 抑菌環之標準曲。
........................................................................................................154
附圖九  Ampicillin 對病原菌 Salmonella typhimurium 抑菌環之標準
曲線。..............................................................................................155
附圖十  Ampicillin 對病原菌 Staphylococcus aureus 抑菌環之標準曲
線。....................................................................................................156
附圖十一 Ampicillin 對病原菌 Listeria monocytogenes 抑菌環之標準
曲線。.............................................................................................157
附圖十二 燕麥基質熱水萃取物之 DPPH 自由基清除能力標準曲線。
........................................................................................................158
附圖三十  桑黃燕麥熱水萃取物之還原力標準曲線。………………176
附圖三十一  桑黃燕麥乙醇萃取物之還原力標準曲線。………………177
附圖三十二  發酵液粉末熱水萃取物之還原力標準曲線。………………178
附圖三十三  發酵液粉末乙醇萃取物之還原力標準曲線。………………179
附圖三十四  BHA 之還原力標準曲線。…………………………180
附圖三十五  α-tocopherol 之還原力標準曲線。…………………181
附圖三十六  Ascorbic acid 之還原力標準曲線。…………………182
附圖三十七  燕麥基質熱水萃取物之總抗氧化能力標準曲線。….183
附圖三十八  燕麥基質乙醇萃取物之總抗氧化能力標準曲線。….184
附圖三十九  桑黃燕麥熱水萃取物之總抗氧化能力標準曲線。….185
附圖四十  桑黃燕麥乙醇萃取物之總抗氧化能力標準曲線。….186
附圖四十一  發酵液粉末熱水萃取物之總抗氧化能力標準曲線。187
附圖四十二  發酵液粉末乙醇萃取物之總抗氧化能力標準曲線。188
附圖四十三  Trolox 之總抗氧化力標準曲線。…………………………189
摘要

本實驗選用桑黃菌 PL02（*Phellinus linteus* PL02）為試驗菌種，探討桑
黃菌於三種不同固態基質（薏仁、黑豆及燕麥）培養發酵期間（30 °C /20
天）之菌絲體生長情形，篩選出最適合桑黃菌生長之固態基質；再以篩選
出之固態基質培養桑黃菌，並探討最適合桑黃菌菌絲體及多醣體生產之固
態發酵培養條件，在最適固態培養條件下，針對桑黃固態發酵產物、未發
酵基質及氣舉式發酵槽發酵液之熱水及乙醇萃取物進行生物活性（抑菌力、
抗氧化能力及癌細胞存活率）之比較評估。

研究結果顯示，最適合培養桑黃菌 PL02 之固態基質為燕麥，菌絲體
產量在第 12 天時可達最高之 494.11 mg/g。最適菌絲體及多醣體生成之固
態培養條件為：培養溫度為 30℃，水添加量為 60% (v/w)，接菌量為 3ml，
最適碳源為 1% (w/w) 之果糖，氮源為 1% (w/w) 之酵母萃取物，生
長因子為 0.3% (w/w) 之葉酸、無機鹽類為 0.1% (w/w) 之氯化鈉，起始
pH 值 6.0。以上述最適固態培養條件，可於培養第 12 天達到最高多醣體
（61.73 mg/g）與菌絲體（705.30 mg/g）產量，分別增加為基礎培養基最
高產量（432.30 mg/g 及 45.48 mg/g）之 1.63 及 1.35 倍。

燕麥基質、桑黃燕麥及氣舉式發酵槽發酵液三者之多醣體分子量分佈
以桑黃燕麥最為複雜，且桑黃燕麥多醣體分子量（4.54×10⁴Da）為三者最
高。β-(1→3)-D-glucan 相對含量之測定亦以桑黃燕麥（29.09 μg/ml LE）
最高。

燕麥基質、桑黃燕麥及氣舉式發酵槽發酵液之熱水及乙醇萃取物抑菌
力測定結果顯示在所使用之六種病原菌測定菌株（*Bacillus cereus* BCRC

燕麥基質、桑黃燕麥及氣舉式發酵槽發酵液三者熱水及乙醇萃取物之抗氧化測試中，以桑黃燕麥熱水萃取物在 DPPH 自由基清除能力（IC$_{50}$ = 1.23 mg/ml）、螯合亞鐵離子能力（IC$_{50}$ = 5.26 mg/ml）、還原力（IC$_{50}$ = 1.18 mg/ml）及總抗氧化能力（IC$_{50}$ = 0.89 mg/ml）具有最佳之抗氧化活性。

燕麥基質、桑黃燕麥及氣舉式發酵槽發酵液之熱水萃取物的抑制癌細胞能力皆優於乙醇萃取物。其中又以桑黃燕麥熱水萃取物的抑制效果最佳。經桑黃燕麥熱水萃取物處理（1000μg/ml, 5% CO$_2$/37℃/48hr）後，肺腺癌細胞 (A-549)、乳癌細胞 (MCF-7) 及肝癌細胞 (HepG2) 的存活率分別為 46.29, 55.75 及 63.33%，皆顯著（P < 0.05）低於其他測試組。

綜合上述結果，固態培養之桑黃燕麥較未發酵之燕麥基質及發酵液具有更高的多醣體分子量及多醣體中β-(1→3)-D-glucan 相對含量；樣品萃取物中，以熱水萃取物較乙醇萃取物具較高之生物活性，其中又以桑黃燕麥之熱水萃取物亦具最高之抗氧化力及抑制癌細胞生長能力等生物活性。
Abstract

Three solid substrates (adlay, black bean, and oat) were used to study their effect on the mycelial growth of *Phellinus linteus* during solid-state fermentation (30°C/20 days). The oat was chosen as the most suitable substrate to investigate the optimal solid-state culturing conditions for production of polysaccharide and mycelial biomass, and to compare the bioactivity (antibacterial, antioxidant and antitumor activities) of hot-water and ethanolic extracts from solid-state culture and submerged culture by this strain.

Results showed that the optimal factors of solid-state culture were: incubation temperature of 30°C, water supplementation of 60% (v/w), inoculum volume of 3ml, fructose at 1% (w/w), yeast extract at 1% (w/w), folic acid at 0.3% (w/w), NaCl at 0.1% (w/w) and initial pH of 6.0. Under this optimized culturing condition, yields of polysaccharide (61.37 mg/g) and mycelial biomass (705.30 mg/g) obtained on the 12th day of incubation increased 1.63 and 1.35 times, respectively, as compared with those (45.48 mg/g and 432.30 mg/g, respectively) from basal medium.

Higher molecular weight (4.54×10^4 Da) and relative β-(1→3)-D-glucan content (29.09 μg/ml LE) of polysaccharide were observed from *Phellinus*-fermented oat, as compared with those from oat substrate and submerged culture using air lift fermentor.

Both hot-water and ethanolic extracts from oats substrate, *Phellinus*-fermented oat and submerged culture demonstrated no antibacterial activities against the six bacterial strains (*Bacillus cereus* BCRC 10250, *Escherichia coli* BCRC 10239, *Listeria monocytogene* BCRC 14845,
*Pseudomonas aeruginosa* BCRC 10261, *Staphylococcus aureus* BCRC 10451 and *Salmonella typhimurium* BCRC 10241) tested.

The hot-water extract from *Phellinus*-fermented oat had the highest DPPH scavenging effect (IC$_{50}$ = 1.23 mg/ml), chelating ability on ferrous ion (IC$_{50}$ = 5.26 mg/ml), reducing power (IC$_{50}$ = 1.18 mg/ml) and total antioxidant capacity (IC$_{50}$ = 0.89 mg/ml) among all extracts.

All hot-water extracts showed higher anti-tumor activity than ethanolic extracts, with the hot-water extract from *Phellinus*-fermented oat possessed the highest anti-tumor activity. After treated with hot-water extract from *Phellinus*-fermented oat (1000μg/ml, 5% CO$_2$/37°C/48hr), viabilities of lung-cancer cells (A-549), breast-cancer cells (MCF-7) and liver-cancer cells (HepG2) were 46.29%, 55.75% and 63.33%, respectively, and were significantly (P < 0.05) lower than those of all other extracts.

In conclusion, *Phellinus*-fermented oat possessed polysaccharide with higher molecular weight and relative β-(1→3)-D-glucan content than those of submerged culture and unfermented oat substrate. Extracts from *Phellinus*-fermented oat showed better bioactivity than those from submerged culture. Among the extracts, hot-water extract had higher bioactivity than ethanolic extracts.
壹、前言

本篇研究所使用的桑黃菌種（*Phellinus linteus* PL02）是一種非常珍貴的藥用真菌，主要寄生於桑樹、楊樹等闊葉樹上，子實體邊緣鮮豔的黃色為其特色之一；因其具有良好的抗腫瘤活性，引起國內外學者的重視，韓國學者針對桑黃子實體多醣進行研究，發現桑黃多醣不僅具有抗癌活性，還具有免疫調節的功效（Kim et al., 2006）。

桑黃生長速度緩慢，要長至直徑 30cm 大小，需要花上二、三十年的時間，因此取得不易。目前桑黃的人工栽培大多以菌絲體培養為主，如液態深層培養（submerged culture），而固態發酵培養的理化性質及測量參數較液態培養難控制，因此鮮少有桑黃固態培養的相關資料，然而有文獻指出利用固態發酵培養所得桑黃菌絲體的二次代謝物含量比液態發酵所得含量還高（Robinson et al., 2001）；因此，本研究嘗試以固態培養之方式培養桑黃菌絲體，主要研究目的為 1. 探討桑黃於三種不同固態基質（薏仁、黑豆及燕麥）培養發酵期間（30°C/20 天）之菌絲體生長情形，篩選出最適合桑黃菌生長之固態基質；2. 以篩選出之固態基質培養桑黃菌並探討最適合桑黃菌絲體及多醣體生產之固態發酵培養條件（培養溫度、水添加量、接菌量、起始 pH 值、碳源、氮源、無機鹽類及生長因子）；3. 於最適固態培養條件下，探討桑黃固態發酵產物、未發酵基質及氣舉式發酵槽之桑黃發酵液三者之多醣體分子量分佈及 β-(1→3)-D-glucan 相對含量，並對彼等之熱水及乙醇萃取物進行抑菌力、抗氧化能力及癌細胞存活率試驗之比較評估。藉此建立一套桑黃固態發酵培養因子及生理活性相關參數以期提供未來當作保健食品或醫藥用品開發應用之參考。
貳、文獻回顧

一、桑黃菌簡介

桑黃別名桑黃菇、桑黃耳，是一種寄生於闊葉樹上的多年生蕈類，亦是一種非常珍貴的藥用真菌，依其寄生的樹種不同，形狀、顏色和所含的成分也會不同。而生長於桑樹上的桑黃子實體入藥最佳，因為桑枝根本身就是中藥材。據『藥性論』記載：「桑黃性甘平、無毒、治血崩、血淋、脫肛瀉血、帶下、閉經」。桑黃具有良好的抗腫瘤功效，且無任何的毒性副作用，因此也是開發成保健食品的重要原料(孫等, 2005)，目前在國外特別是韓國和日本對其進行廣泛的研究。桑黃生長緩慢，據說要長至直徑30cm大小，需要花上二、三十年的時間。桑黃木一旦遭其寄生後，會造成枯萎，所以在養蠶旺季時通常會遭到摘除的命運，也因其取得不易，加上人工栽培困難，故又被稱為「夢幻菇蕈」(高木, 2004)。

（一）桑黃菌之分類、命名及分布

桑黃菌在分類上是屬於真菌界(Fungi)、擔子菌門(Basidiomycotina)、真正擔子菌綱(Hymenomycetidae)、平滑臥孔菌目(Aphyllophorales)、刺革菌科(Hymenochaetaceae)、火木層孔菌屬(Phellinus)，分類如圖一所示(真野, 2003)。原產地包含日本等東南亞地區、澳洲及北美等地區也有分布。最初是在墨西哥東南部的尤卡坦半島發現,所以亦稱為 Phellinus yucatensis。在日本，因其寄生於日本長崎男女群島之女島桑樹上，且形狀似瘤，故命名為女島瘤(meshimakobu)(齊和楊, 2004)。

不同地區的桑黃品種也有所不同。在中國，桑黃大多為火木層孔菌或針層孔菌(Phellinus igniarius)，但戴(2003)認為中國桑黃屬鮑氏層孔菌(Phellinus baumii Pilat);在韓國，裂蹄桑黃則以木層孔菌(Phellinus linteus)為主。目前對桑黃的研究集中在 Phellinus igniarius 和 Phellinus linteus 上。
图一 桑黄菌之分类。
Fig. 1 Classification of *Phellinus* spp. (真野, 2003)
彼等之型態特徵簡述如下：

1. 火木層孔菌或針層孔菌（Phellinus igniarius）（卯，1999）：
子實體多年生，馬蹄形至扁半球形，木質硬，菌蓋寬3~12 cm，初期有微細絨毛，淡褐色，以後光滑，變暗灰黑或黑色，老時龜裂，無皮殼，邊緣鈍圓，淺咖啡色，下側無子實層。菌肉深咖啡色，硬木質，管孔多層，與菌肉同色，老的管孔中充滿白色菌絲。孢子無色，光滑，近球形（4.5~6）μm ×（4~5）μm，寄生於柳、樺、楊、花楸、山楂等闊葉樹的樹幹上（圖二-（a））。

2. 裂蹄木層孔菌（Phellinus linteus）（卯，1999）：
子實體為多年生。菌蓋（2~10）cm ×（4~17）cm，厚1.5~7 cm，半圓形或馬蹄形，深烟色至黑色，初期有細絨毛，後變光滑和龜裂，硬而木質化，下側無子實層。菌肉淡黃色或淺咖啡色，厚2~7 mm。菌管同菌肉色相似，多層，但層次不明顯，老年的菌管層充滿白色菌絲，每層厚2~5 mm，管口同色，圓形。孢子（3.5~4.5）μm × 3μm，黃褐色，光滑，近球形。寄生於楊、櫟、丁香、樺槭等樹木的枯木及立木和樹幹上（圖二-（b））。
Fig. 2 The morphology of (a) *Phellinus igniarius* and (b) *Phellinus linteus*. 
二、桑黃菌化學組成及其藥理功能之應用

（一）桑黃菌的化學成分

桑黃的主要化學成分為多醣體，也是目前研究中桑黃抗腫瘤作用的主要成分。桑黃多醣含有13.2%（w/w）的蛋白質、82.5%（w/w）的碳水化合物，而6.8%（w/w）的碳水化合物為糖醛酸（uronic acid）。經由GC（gas chromatography）證實此部份為葡萄糖醛酸（glucuronic acid）。

Hwang等人（2003a）分析桑黃菌中胺基酸組成，桑黃含有數種胺基酸，其中以天門冬胺酸（aspartic acid）及麩胺酸（glutamic acid）為主（表一）。

桑黃多醣除了含有葡萄糖外，還有半乳糖、甘露糖、阿拉伯糖和岩藻糖（fucose）等，其中以在C-6有葡萄糖分枝之β-1,3-葡聚糖的抗癌效果最好（Kim et al., 1994）。Lee等人（1995）對P. linteus菌絲體進行多醣之研究，發現其分子量從9,000到15,000不等，主要成分為葡萄糖、半乳糖、甘露糖、阿拉伯糖、木糖，糖醛酸和胺基酸也被檢測到。

桑黃還含有落葉松蕈酸、脂肪酸、固醇類物質、三萜類、芳香酸及甘氨酸等多種胺基酸，以及木糖氧化酶、尿酶、酯酶、過氧化氫酶等多種酶類（陳等人，2007）。此外莫等人（2003a）從桑黃中分離出5種黃酮和2種香豆素類化合物。桑黃亦含有麥角固醇（ergosterol）（劉等，1998）及黑色素、酚類色素等（莫等人，2003b）。
### Table 1 The amino acid and carbohydrate composition of crude polysaccharide from *Phellinus linteus.*

<table>
<thead>
<tr>
<th>種類</th>
<th>含量（% w/v）</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Amino acid</strong></td>
<td></td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>15.88</td>
</tr>
<tr>
<td>Threonine</td>
<td>6.57</td>
</tr>
<tr>
<td>Serine</td>
<td>7.84</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>11.73</td>
</tr>
<tr>
<td>Glycine</td>
<td>11.61</td>
</tr>
<tr>
<td>Alanine</td>
<td>5.17</td>
</tr>
<tr>
<td>Cystine</td>
<td>2.55</td>
</tr>
<tr>
<td>Valine</td>
<td>5.04</td>
</tr>
<tr>
<td>Methionine</td>
<td>2.68</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>3.32</td>
</tr>
<tr>
<td>Leucine</td>
<td>3.38</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>3.23</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>5.49</td>
</tr>
<tr>
<td>Histidine</td>
<td>1.59</td>
</tr>
<tr>
<td>Lysine</td>
<td>5.29</td>
</tr>
<tr>
<td>Arginine</td>
<td>9.63</td>
</tr>
</tbody>
</table>

| **Carbohydrate**        |             |
| Maltose                 | 8.13        |
| Arabinose               | 25.05       |
| Xylose                  | 3.86        |
| Mannose                 | 26.45       |
| Galactose               | 21.45       |
| Glucose                 | 15.04       |

(Hwang et al., 2003a)
（二） 桑黃菌的藥理功能

1. 抗腫瘤活性

（1）抑制癌細胞增殖

桑黃菌可以提高人體巨噬細胞、NK 細胞與 T 細胞的活性，具有強化 B 細胞產生抗體的能力（高木，2004）。但桑黃菌最主要抑制癌細胞增殖的活性，來自於其可誘導癌細胞自行毀滅。日本京都大學農學部與日本生藥等產學合作共同研究報告指出（真野，2003），野生桑黃可誘導多種癌細胞自行毀滅。該實驗採 3 種人類的正常細胞及 15 種人類癌細胞，以野生桑黃的熱水萃取液進行處理。結果顯示，野生桑黃熱水萃取液對正常人類細胞並無影響，但可誘發多種癌細胞自行毀滅，尤其對消化系統癌症，如小腸癌、大腸癌、胃癌等癌細胞具有顯著的誘導毁滅效果（圖三）。

（2）抑制癌細胞轉移

Han 等人（1999）指出桑黃（P. linteus）多醣體不僅可以抑制腫瘤的生長，還可以抑制腫瘤的轉移。Han 等人（2006）對移植 B16F10 黑色素瘤的老鼠給予桑黃（P. linteus）的酸性多醣，發現其可顯著提高老鼠的存活率；並進一步追究 B16F10 黑色素瘤往肺部轉移的程度，結果發現桑黃還能抑制 NCI-H23 肺癌細胞的生長，降低 B16F10 黑色素瘤的轉移。

Chen 等人（2006）由 P. linteus 中萃取分離出的一種酚類衍生物 hispolon，分子式 C12H4O11，hispolon 對於人表皮癌 KB 細胞的 IC50 為 4.62 μg/ml，當濃度提升到 10 μg/ml 時，KB 細胞凋亡數量占 67.9%，Caspase-3 的活性提高 5.47 倍，Caspase-3 是使細胞凋亡的主要功能蛋白，活化 Caspase-3 可進行一連串的蛋白質酶解作用（proteolysis
cascade) induce cell apoptosis, and trigger caspase C release. Kim et al. (2006) isolated a molecular weight of 73 KDa from P. linteus, composed of D-glucose and D-mannose, mainly composed of asparagine. PPC, is highly cell-specific, selectively activates B cells but not T cells. PPC can also stimulate macrophages to produce NO, thereby accelerating NO-sensitized B16 melanoma cell lysis. Furthermore, from P. linteus, a molecular weight of 15 kDa PPC2 was isolated, which can activate CD4+ Th and CD8+ T cells to achieve antitumor effects. This PPC's antitumor activity is related to the maturation of immune organs (Kim et al., 2004).
Fig. 3  The result of *Phellinus* spp. Hot-water extract induced cancer cells to self-destruction.
2. 抗氧化

一般生物體內自由基和活性氧會維持一個平衡狀態，當體內自由基和活性氧過多或抗氧化物質含量降低，超過人體細胞本身的抗氧化能力時，就會產生氧化壓力 (oxidative stress)。氧化壓力會引起身體產生許多病變或造成老化，如癌症、阿茲海默症、動脈粥狀硬化、糖尿病等疾病 (表二)。因此，如何減少或抑制自由基和活性氧的過量產生所帶來的氧化壓力對人體造成的氧化傷害及由日常生活飲食中攝取抗氧化物質來預防和強化體內之防禦系統以預防氧化傷害，皆是目前學者研究的重要課題。

Song 等人 (2003) 利用桑黃 (P. linteus) 子實體的 70%酒精萃取物進行其抑制 DPPH 自由基 (1,1-diphenyl-2-picrylhydrazyl radicals)、脂質過氧化 (lipid peroxidation，LPO) 以及黃嘌呤氧化酵素 (xanthine oxidase) 等抗氧化試驗，發現桑黃子實體萃取物濃度於 10 至 300 μg/ml 時，有最好的抗氧化效果。Shon (2003) 等人利用 β-胡蘿蔔素-亞麻油酸模式 (β-carotene-linoleate model) 和活性氧反應產生系統來測定抗氧化作用和自由基清除能力，結果顯示桑黃 (P. baumii) 甲醇及熱水萃取物具有高抗氧化活性和殼自由基、過氧化氫的清除力和抗氧化活性；Park 等人 (2001) 發現 Garnederma lucidum 和 P. linteus 的熱水萃取物能夠活化抗氧化酵素觸酶 (catalase) 的活性，此酵素可以將 H2O2 轉換成 H2O 和 O2，而達到體內抗氧化的效果。

3. 抗菌功能

Hur 等人 (2004) 採用浸提法提取桑黃子實體得到甲醇、氯仿、正丁醇和水的萃取物，再分別以 0.06%、0.08%、0.016% 及 0.026% (w/w) 等濃度對抗藥性金黃色葡萄球菌 (methicillin-resistant Staphylococcus aureus) 進行測試，結果發現其最低抑菌濃度 (Minimal inhibitory concentration；MIC) 以正丁醇萃取物的效果最好 (MIC：63-125 μg/ml)。
Table 2  Some clinical diseases in which oxygen free radical are thought to be involved.

<table>
<thead>
<tr>
<th>Category</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging</td>
<td>Inflammatory-immune injury</td>
</tr>
<tr>
<td>Brain</td>
<td>Rheumatoid arthritis</td>
</tr>
<tr>
<td></td>
<td>Glomerulonephritis</td>
</tr>
<tr>
<td></td>
<td>Autoimmune disease</td>
</tr>
<tr>
<td></td>
<td>Vasculitis</td>
</tr>
<tr>
<td></td>
<td>Kidney</td>
</tr>
<tr>
<td></td>
<td>Metal-mediated nephrotoxicity</td>
</tr>
<tr>
<td></td>
<td>Aminoglycoside nephrotoxicity</td>
</tr>
<tr>
<td></td>
<td>Autoimmune nephritic syndrome</td>
</tr>
<tr>
<td>Cancer</td>
<td>Lung</td>
</tr>
<tr>
<td></td>
<td>Bronchopulmonary dysplasia</td>
</tr>
<tr>
<td></td>
<td>Mineral dust pneumoconiosis</td>
</tr>
<tr>
<td></td>
<td>Hypoxia</td>
</tr>
<tr>
<td>Eye</td>
<td>Cigarette-smoke effect</td>
</tr>
<tr>
<td></td>
<td>Emphysema</td>
</tr>
<tr>
<td></td>
<td>Adult respiratory distress syndrom (ARDS)</td>
</tr>
<tr>
<td></td>
<td>Oxidant pollutant</td>
</tr>
<tr>
<td>Gastro-intestinal tract</td>
<td>Nutritional deficiencies</td>
</tr>
<tr>
<td></td>
<td>Thalassaemia and other chronic anaemias treated with multiple blood transfusions</td>
</tr>
<tr>
<td></td>
<td>Dietary iron overload</td>
</tr>
<tr>
<td></td>
<td>Idiopathic haemochromatosis</td>
</tr>
<tr>
<td>Iron overload</td>
<td>Red blood cell</td>
</tr>
<tr>
<td></td>
<td>Fanconi's anaemia</td>
</tr>
<tr>
<td></td>
<td>Sickle cell anaemia</td>
</tr>
<tr>
<td></td>
<td>Haemorrhagic retinopathy</td>
</tr>
<tr>
<td></td>
<td>Protoporphyrin photo-oxidation</td>
</tr>
<tr>
<td>Ishaemia-reperfusion</td>
<td></td>
</tr>
<tr>
<td>Stroke/myocardial infarction</td>
<td></td>
</tr>
<tr>
<td>Organ transplantation</td>
<td></td>
</tr>
</tbody>
</table>

4. 增強免疫力

桑黃菌的免疫作用流程如圖四所示。桑黃含有多種活性成分如醣類、
多種酶類及蛋白聚醣等，在體外試驗中發現可誘導免疫細胞並增加其活性
(張等, 2002)。亦有研究指出以 P. linteus 的菌絲胞外多醣(exopolysaccharide;
EPS)進行免疫學實驗，發現 EPS 不僅能使 T 細胞增殖，而且對不同種類抗
原的 T 細胞也具有增殖作用，且發現毒殺型 T 淋巴細胞的毒殺能力在加入
EPS 後會大大提升(Kim et al., 1996)。

5. 抗發炎

Kim 等人(2006)發現，第一型血基質氧化酶(heme oxygenase-1, HO-1)
刺激巨噬細胞所引起的發炎反應，給予桑黃正丁醇萃取物之後即有抑制作
用，且具有劑量效應。亦即桑黃的正丁醇萃取物具有抗發炎作用，且效果
會隨著劑量的增加更為明顯。

6. 降血糖及血脂作用

Kim 等人(2001)利用肌肉注射將脲黴素(streptozotocin)注入老鼠，誘導
其成為糖尿病鼠(streptozotocin-induced diabetic rats)後，再餵食桑黃多醣。
結果顯示經餵食桑黃多醣後的糖尿病鼠其葡萄糖、總膽固醇與總三酸甘油
脂的濃度均明顯的降低，並可降低天冬胺轉氨酶（aspartate aminotransferase；AST）之活性。此外，Hwang 等人(2005)亦發現桑黃
(P. baumii) 胞外多醣可降低利用脲黴素(streptozotocin)誘導之糖尿病鼠
血清中葡萄糖及總三酸甘油脂含量，分別為 52.3%和 39.4%，並且也可降
低丙胺酸轉氨酶（alanine aminotransferase；ALT）之活性，根據上述文獻，
可知桑黃多醣具有良好的降血糖與降血脂之功效。
圖四　桑黃的免疫作用機制。
Fig. 4 The immunity mechanism by *Phellinus linteus*.
（高木，2004）
（三）桑黃菌之藥用開發與未來展望

桑黃的抗癌機制逐漸被人們認識，加上深層培養技術的開發成功，故市場潛力受到注目。但目前市場化發展較慢，可能是因為對其藥理作用研究上不夠深入所致。因此要加快桑黃市場化的腳步，必須致力於開發培養技術，藥理研究，進而發展新產品，開拓市場(王，2006)。桑黃菌種的分離鑑定與培養成為首要的工作；其次可進一步開展桑黃的人工栽培，探索菌種、菌齡以及培養條件的關係，並進行有效成分的鑑定（徐，2008）。

根據日本國立癌症中心的研究，在許多菇蕈類中，野生桑黃的腫瘤抑制率為目前第一名。後來許多研究者花了很長的時間，希望能夠進行人工栽培，因為桑黃菌絲體生長相當緩慢，人工培養困難，因此比起已量產的其他珍貴菇類，如靈芝、冬蟲夏草等，更顯得珍貴，韓國自 1980 年起就以國家計劃研究開發桑黃，當作保健食品推廣，1993 年更將桑黃列為醫藥品，並擬定開發計畫，而且已經率先研發出桑黃菌絲體的培養技術，以人工培養方法生產桑黃活性物質，再將其萃取物以凍乾法加工成粉末。由於抗癌效果顯著，桑黃萃取物粉末在韓國市場的價格相當的昂貴；日本也於 1998 年開始進口韓國的桑黃相關產品，在 2000 年已有多家健康食品廠商投入桑黃的生產；可見桑黃在日本保健食品市場是新興的一股勢力；在台灣方面，提出「桑黃栽培與液體發酵之功效性研究」、「桑黃固體培養栽培與液體發酵優良品系之篩選」等研究計畫，這些年在產業與學術的合作推廣下，已收到良好的成果(陳，2009)。
三、 藥用菇類多醣簡介

多醣體(polysaccharides)是由多數單糖類(葡萄糖、果糖和半乳糖等)結合而成的高分子有機物，而菇類多醣與一般常見的醣類(澱粉、糊精、肝醣)的分子結構不同。多醣體為自然界中含量相當豐富的生物聚合體，在微生物體中多醣體的存在形式分為三大類(許，2004)：

1. 胞內多醣(intracellular polysaccharides)：主要提供微生物生長所需能量及碳源。
2. 胞外多醣(extracellular polysaccharides)：通常是附著於細胞外部的黏性物質。
3. 結構多醣(structure polysaccharides)：主要架構微生物菌體的多醣基本形態。

（一）多醣體之結構

在臨床上，目前有數種菇類製劑已證實在治療人類癌症上具有明顯的效果，如香菇多醣(lentinan)、裂褶菌多醣(schizophyllan)、雲芝多醣(krestin)等；在上述菇類多醣製劑中，已知其有效成分均屬於天然的β-D-葡聚醣類(β-D-glucan)。

現已證實多醣體中的β-(1→3)-D-glucan結構為抗腫瘤的重要因素，這些多醣體的分子結構是以β-(1→3)-D-glucan為主鏈，沿著主鏈隨機分佈β-(1→6)-D-glucan，如圖五所示(賴，2003)。此外利用X-射線繞射分析其多醣體立體結構，結果得知β-(1→3)-D-glucan會形成螺旋結構如圖六所示，可能是其具有抗腫瘤功效的主要成因(水野和川合，1999)。
具抗腫瘤活性的\(\beta-(1\rightarrow6)\)分支\(\beta-(1\rightarrow3)\)-D-葡聚醣結構。

Fig. 5 Structure of \(\beta-(1\rightarrow3)\)-D-glucan with \(\beta-(1\rightarrow6)\)-branching side chain. （水野和川合，1999）

X 射線衍射測定之 \(\beta-(1\rightarrow3)\)-D-葡聚醣結晶結構。

Fig. 6 The crystal structure of \(\beta-(1\rightarrow3)\)-D-glucan by X-ray analysis. （水野和川合，1999）
（二）β-D-葡聚醣類(β-D-glucan)之免疫活性

多醣體並非直接作用殺死腫瘤細胞，而是透過活化多種免疫細胞而達到抗腫瘤的效果(Mizuno, 1995)，從而抑制癌細胞的增生或將其排除，可歸類為一種生物反應調節劑，換言之，其不會對身體造成傷害性或額外的壓力。

以香菇多醣對人體的免疫系統作用為例，它能從巨噬細胞或是 T 細胞誘導生產 interleukin-1 (IL-1) 因子，使未成熟的細胞殺傷性 T 前驅細胞、細胞管制輔助性 T 前驅細胞、自然殺手細胞 (NK) 等成熟分化，增加寄主免疫擔當細胞的受體，提高其對 IL-2、NK 活性因子 (NKAF)、巨噬細胞活化因子 (MAF) 等各種細胞激素的反應性、進而活化細胞殺傷性 T 細胞、NK 細胞、細胞殺傷性巨噬細胞或延遲型過敏反應有關的細胞群，最後以特異性或非特異性殺傷破壞目標 (水野和川合, 1999)。以上免疫活性總結如圖七所示。
圖七 香菇多醣(lentinan 對)寄主所產生的免疫反應。
Fig. 7 The immunity reaction in host by lentinan. (水野和川合，1999)
四、 固態發酵製程之簡介

固態發酵製程（solid-state fermentation）是指利用固體型態的營養基質，例如穀物或農業廢棄物等，在較低含水量（一般約40%~60%）的環境下培養微生物，與其相對應的則是液態發酵製程（submerged fermentation），液態發酵製程大多使用可溶性營養基質，培養液中90%以上是水（Mitchel and Lonsane, 1992）；就培養環境而言，兩種不同製程間的差異頗大，因此在菌體生長型態、基因表現、酵素和二次代謝物質的產生也必然有所不同。微生物在利用固態營養基質時，會自然攀附或穿透固態營養基質生長，此生長型式較接近自然的生長型態，這樣的生長過程與型態在液態發酵製程是不容易達成的，對於某些微生物二次代謝產物的生產，這種自然且完整發育的生長型態是極為重要的（Viniegra-Gonzalez et al., 2003）。日本的菇類專家指出，桑黃的固體培養菌絲體除了在抗癌效果上優於液態培養者之外，經固態培養後之桑黃還會生產許多抗老和抗氧化的微量元素。此外，有文獻指出固態培養之桑黃在提升自體免疫功能方面的作用，效果也優於液態培養之桑黃（陳，2009）。

（一） 固態發酵之特性

固態發酵通常使用穀物或農業廢棄物等較便宜、容易取得的原料當做營養基質進行培養，這些物質通常含有澱粉類、纖維素類與多醣類等大分子物質，微生物在生長過程中需要產生較多樣的水解酵素才能有效利用這些營養基質，因此利用固態發酵來進行水解酵素的生產是極具潛力的。而固態基質並非完全緊密分佈在環境中，其顆粒間仍有空隙存在，因此連串相為氣相（空氣），使基質的混合和擴散都較困難，容易導致溫度、基質濃度及產物濃度的梯度（Viniegra-Gonzalez, 1997）。在氧氣傳遞方面，基質顆粒的表面或其附近部份具有較佳的氧氣供給，因此微生物會經常攀附生
長於基質表面或向內穿透生長。相對於液態深層培養，因為水是連續相，在培養過程中不斷攪拌與通氣，微生物則懸浮沉浸在液體中生長，由此可發現微生物在固態與液態發酵中的生長環境與生長型態有很大的差異（羅和余，2004）。表三為固態發酵與液態發酵之間的差異性，從中也可了解固態發酵製程的特性與優缺點（Durand and Chereau, 1998）。

以下簡單介紹固態發酵製程的優缺點（Sato and Sudo, 1999；Durand, 2003；羅和余，2004）：

固態發酵的優點：

1. 培養基組成份較簡單，通常使用農業廢棄物或未精製過的農產品當做基質，基質中富含微生物生長所需的養分。
2. 低水份的培養環境對某些微生物的代謝產物產生有特別影響，在液態發酵中，微生物沉浸在液體中培養，較不利於此類代謝產物的產生。
3. 細菌受到低水活性的限制，因此固態發酵較不易受到細菌汙染。
4. 基質濃度高，相同量的基質於固態發酵較液態發酵所需的發酵設備體積較小，生產成本也較低，同時也可具有較高的體積產率。
5. 固態發酵因基質間具有顆粒間空隙，可以讓空氣較容易達到基質表面，微生物利用空氣中的氧氣，降低了通氣的能量成本。空氣的供給與基質床的溫度可藉由強制通氣來控制。固態基質的表面積大，可促進熱傳送與氧氣和二氧化碳的氣體交換。
6. 若產物必需從固態發酵中萃取，只需要較少的溶劑與較低的回收成本。
7. 發酵殘餘物的處理非常簡單。因為發酵殘餘物的水含量很低，可將其乾燥後做為動物飼料或肥料。
表三 固態發酵與液態發酵特點的比較
Table 3 Comparative characteristic of solid-state fermentation and submerged fermentation.

<table>
<thead>
<tr>
<th>項目</th>
<th>固態發酵</th>
<th>液態發酵</th>
</tr>
</thead>
<tbody>
<tr>
<td>培養基</td>
<td>使用多種不易溶解的穀物或農業廢棄物，其成份不完全明確，基質濃度高，故單位體積產率也較高</td>
<td>由多種純度高、化學成份明確的物質所組成，基質濃度低，故每單位體積產率較低。</td>
</tr>
<tr>
<td>水活性</td>
<td>具較低的水活性，因此雜菌不易生長</td>
<td>水活性高，許多微生物皆可生長，易被雛菌所汙染</td>
</tr>
<tr>
<td>氧氣供給</td>
<td>空氣呈連續相，氧氣質傳速率較佳</td>
<td>氧氣不溶於水，氧相到液相的傳氧係數小</td>
</tr>
<tr>
<td>混合攪拌</td>
<td>傾向不攪拌或低度攪拌，以免破壞微生物特殊的生長型態</td>
<td>施以攪拌以達到培養環境的均勻性</td>
</tr>
<tr>
<td>溫度控制</td>
<td>代謝熱的移除較為困難，培養環境之溫控較難實施</td>
<td>培養環境之溫控較容易進行</td>
</tr>
<tr>
<td>參數控制</td>
<td>由於參數測定及菌體測量不易進行，發酵過程監控困難</td>
<td>許多參數檢測方法已實用，菌體檢測容易，發酵過程易自動控制</td>
</tr>
<tr>
<td>耗能</td>
<td>能源消耗較小</td>
<td>能源消耗較大</td>
</tr>
<tr>
<td>動力學研究</td>
<td>微生物動力學及傳導動力學研究不足</td>
<td>微生物動力學及傳導動力學研究充分，可應用於反應器的設計和放大</td>
</tr>
</tbody>
</table>

（Durand, 1998）
固態發酵的缺點：

1. 固態發酵基質含水量較低，與液態發酵相比，所能培養微生物種類受到較多限制。

2. 基質床的攪拌非常困難。因此，菌體、養分、溫度、水含量容易分佈不均，造成基質床異質性的生理、物理、化學環境。這個複雜性使得過程控制非常困難。

3. 在大規模固態發酵培養時，微生物呼吸或代謝時所產生的發酵熱如何移除以避免溫度的上升較難控制。通常強制通氣式控制培養溫度的唯一方法。

4. 固態發酵時菌體與基質緊密的結合在一起，菌體量的測量極為不容易，菌體生長與其他發酵參數的快速測量困難。尚無有用的感測器可供直接測量菌體生長或其他之發酵參數。

5. 由於影響固態發酵高產率的因子還是未知數，培養策略完全是靠經驗與實驗結果。
(二) 固態發酵生物量之測定

生物量(biomass)是表示微生物生物體生長狀況的一項參數。微生物在發酵過程中的產物可分為生物體和微生物生長過程中的代謝產物這兩大類。在發酵生產的過程中生物體的多寡代表著微生物生長的狀況，其通常與發酵代謝產物有一定的比例關係，因此，要得到最佳的產物量，有必要使微生物生長達到其最佳的狀態，這就涉及到生物量測定的問題。由於固態發酵製程中使用固態基質造成不均勻的特性，使培養過程中發酵參數在監控上較困難，尤其是在菌體量的測量方面，因為真菌菌絲侵入固態基質內部生長，並且與基質緊密結合，導致菌體量的測量是極為不容易（羅和余，2004）。以下對固態發酵菌體量的測量方式進行介紹，主要可分為三大類（路和趙，2000）：

1. 直接測量法

直接測量法包含基質的去除與細胞的計數。

（1）Wei 等人（1981）利用半固態明膠培養基培養酵母菌（Saccharomyces cerevisiae），將溫度加熱到適當溫度使明膠溶解，利用離心將酵母菌與基質分離，即可得到酵母菌懸浮液。再利用分光光度計測量菌體濃度與吸光值之關係，即可得知菌體濃度。

（2）將菌體與基質分離後，可利用血球計數器或平板計數法估算菌體量。

2. 通過菌體的代謝活動間接量測生物量

（1）氧氣與二氧化碳代謝速率

微生物在代謝過程，進行呼吸作用消耗氧氣產生二氧化碳，因此可利用測定二氧化碳的釋放速率，來估算菌體的生成速率。Sugama
25

和Okazaki（1979）在培養Aspergillus oryzae過程中，利用NaOH溶液吸收氣相中的CO₂，再以滴定的方式定量生成CO₂，發現其與菌體間具有良好的線性關係。Narahara（1982）等人利用紅外線二氧化碳分析儀測量Aspergillus oryzae在固態培養過程中CO₂生成速率，結果顯示CO₂生成速率和菌體的比生長速率呈現性關係。

(2) 胞外酶的產生

與生長相關聯的另一種代謝活動是微生物生產的胞外酶。Okazaki等人(1980)提出利用米麴固態發酵蒸米所產生的α-澱粉酶與其菌絲體產量有比例關係。Wood（1979）指出固態培養洋菇（A. bisporus）所分泌的胞外漆酶（laccase）活性與菌絲量成正比關係長達70天，且這種關係不隨培養溫度及培養基的不同而變化。

(3) 其他代謝活動相關產物

Matcham等人(1984)指出固態發酵中的ATP含量也是生物體生長活動的量度，但只能作為菌體量的粗略估計。

3. 通過菌體組成份的含量間接量測生物量

若菌體組成份，如DNA、蛋白質、葡萄糖胺及麥角固醇等，其占菌體量的比例維持一定範圍，或對菌體不同生長階段其比例的改變已具有相當程度的了解，因此可藉此推估菌體量。

(1) 氮和蛋白質

菌體中含有一定量的蛋白質，因此蛋白質的增加可作為生長指標。Carrizalez等人（1981）所述，微生物體的蛋白質含量通常與比生長速率有一定的比例關係，但此測量方法有可能受到基質中本身所含蛋白質的干擾。
(2) 核酸

利用核酸檢測的方法適用於白米培養基，因為米麴酶不產胞外核糖核酸酶(DNase)。只有當基質本身所含核苷酸量少，無其它化學物質干擾時，DNA或RNA的檢測方法才是準確的(Matcham, 1984)。

(3) 葡萄糖胺（glucosamine）

幾丁質是真菌細胞壁的主要成分，幾丁質在酸性條件下可被分解為葡萄糖胺。植物的細胞壁中不含有幾丁質，且固態發酵所利用的基質都是植物。因此，可利用葡萄糖胺含量的測定，進行固態發酵中菌體量的估算（溫, 2005）。唐等人（2006）在猴頭菇（Hericium erinaceus）固態發酵過程中，利用Elson-Morgan法測定發酵物中葡萄糖胺含量，發現其與菌體量之間具有良好的線性關係。

(4) 麥角固醇（ergosterol）

麥角固醇是真菌中主要的固醇類物質，為細胞膜中的重要組成份。Matcham等人（1985）培養A. bisporus過程中，進行葡萄糖胺和麥角固醇對比菌體的生長情況。結果得到了固態發酵中葡萄糖胺和麥角固醇與菌體間的線性關係。麥角固醇的測定方便，可利用高效能液相層析儀(HPLC)配合UV偵測器即可測定，提供測定低菌體含量一個靈敏的檢測方法。
參、材料與方法

一、試驗材料

（一）試驗菌種

1. 桑黃菌種

*Phellinus linteus*  HS-050614D-02
由漢馨科技股份有限公司(台北縣，台灣)提供

2. 測試抑菌能力菌種

*Bacillus cereus*  BCRC 10250

*Escherichia coli*  BCRC 10239

*Listeria monocytogene*  BCRC 14845

*Pseudomonas aeruginosa*  BCRC 10261

*Staphylococcus aureus*  BCRC 10451

*Salmonella typhimurium*  BCRC 10241

購自食品工業發展研究所生物資源保存及研究中心
(新竹市，台灣)

（二）試驗細胞株

A-549 (Human lung carcinoma cell)  BCRC 60074

MCF-7 (Human breast adenocarcinoma cell)  BCRC 60436

HepG2 (Human hepatoblastoma cell)  BCRC 60025

購自食品工業發展研究所生物資源保存及研究中心(新竹市，台灣)
（三）固態培養基質

薏仁、黑豆及燕麥顆粒，購自台灣小糧口有限公司。

（四）培養基

1. 真菌培養基

(1) Potato Dextrose Agar（PDA）

<table>
<thead>
<tr>
<th>成分</th>
<th>重量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potato starch</td>
<td>4 g</td>
</tr>
<tr>
<td>Dextrose</td>
<td>20 g</td>
</tr>
<tr>
<td>Agar</td>
<td>15 g</td>
</tr>
<tr>
<td>Water</td>
<td>1000 ml</td>
</tr>
<tr>
<td>pH</td>
<td>5.62</td>
</tr>
</tbody>
</table>

(2) 基礎培養基（Basal medium）

<table>
<thead>
<tr>
<th>成分</th>
<th>重量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>10 g</td>
</tr>
<tr>
<td>Peptone</td>
<td>5 g</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>3 g</td>
</tr>
<tr>
<td>MgSO₄ · 7H₂O</td>
<td>1 g</td>
</tr>
<tr>
<td>Water</td>
<td>1000 ml</td>
</tr>
<tr>
<td>pH</td>
<td>5.6</td>
</tr>
</tbody>
</table>

固體基礎培養基為另加 1.8% agar 製成。
2. 細菌培養基

Nutrient Agar (NA)

<table>
<thead>
<tr>
<th>Component</th>
<th>Final Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef extract</td>
<td>3g</td>
</tr>
<tr>
<td>Peptone</td>
<td>5g</td>
</tr>
<tr>
<td>Agar</td>
<td>15g</td>
</tr>
<tr>
<td>Water</td>
<td>1000 ml</td>
</tr>
<tr>
<td>pH</td>
<td>6.8</td>
</tr>
</tbody>
</table>

固體基礎培養基為另加 1.8% agar 製成。

3. 細胞培養基

(1) 肺腺癌 (A-549) 細胞培養基 (RPMI1640)

<table>
<thead>
<tr>
<th>Medium Component</th>
<th>Final Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-glutamate</td>
<td>2mM</td>
</tr>
<tr>
<td>Non-essential amino acid</td>
<td>0.1mM</td>
</tr>
<tr>
<td>Sodium pyruvate</td>
<td>1 mM</td>
</tr>
<tr>
<td>Penicillin</td>
<td>1 mM</td>
</tr>
<tr>
<td>Fetal bovine serum</td>
<td>5%</td>
</tr>
<tr>
<td>Sodium bicarbonate</td>
<td>3.7g/L</td>
</tr>
</tbody>
</table>
(2) 乳腺 (MCF-7) 細胞培養基 (RPMI1640)

<table>
<thead>
<tr>
<th>Medium component</th>
<th>Final conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium pyruvate</td>
<td>1 mM</td>
</tr>
<tr>
<td>Penicillin</td>
<td>1 mM</td>
</tr>
<tr>
<td>Fetal bovine serum</td>
<td>10%</td>
</tr>
<tr>
<td>Sodium bicarbonate</td>
<td>3.7g/L</td>
</tr>
</tbody>
</table>

Final vol 500ml

(3) 肝癌 (HepG2) 細胞培養基 (DMEM / high glucose)

<table>
<thead>
<tr>
<th>Medium component</th>
<th>Final conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-glutamate</td>
<td>2 mM</td>
</tr>
<tr>
<td>Sodium pyruvate</td>
<td>1 mM</td>
</tr>
<tr>
<td>Penicillin</td>
<td>1 mM</td>
</tr>
<tr>
<td>Fetal bovine serum</td>
<td>10%</td>
</tr>
</tbody>
</table>
(五) 重要藥品

1. 葉酸 (folic acid)、木糖 (xylose)、抗壞血酸 (ascorbic acid)、核黃素 (riboflavin)、玉米浸漬液 (corn steep liquor)、Peroxidase、ABTS (2,2-Azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid)、DPPH (α,α-diphenyl-β-picryl-hydrazyl)、BHA (butylated hydroxyanisole)、BHT (butylated hydroxytoluene)、α-tocopherol、三氯醋酸 (trichloroacetic acid)、澱粉酶 (α-amylase)、噻胺 (thiamin)、Ferrozine (3-(2-pyridyl-5,6-diphenyl-1,2,4-triazine-4',4''-disulfonic acid sodium salt)、EDTA (ethylenedinitrilo tetraacetic acid disodium salt dehydrate)、對二甲氨基苯甲醛 (ρ-dimethylaminobenzaldehyde) 等購自美國 Sigma 公司。

2. 硫酸銨 (ammoniumsulfate)、磷酸二氫銨 (ammonium dihydrogen phosphate)、硝酸銨 (ammoniumnitrate)、尿素 (urea)、磷酸氫二鈉 (di-sodium hydrogen phospate) 等購自德國 Merck 公司。

3. 蛋白胨 (peptone)、酵母萃取物 (yeast extract)、洋菜粉 (agar) 等購自印度 Himedia 公司。

4. MgSO₄·7H₂O (magnesiumsulphate-7-hydrate)、三氯化鐵 (ferric chloride) 購自日本島久藥品株式會社。

5. 乳糖 (lactose)、鹽酸 (hydrochloric acid)、氯化亞鐵 (ferrous chloride)、磷酸二氫鈉 (sodium dihydrogen phpsphate)、氯化鈉 (sodium chloride)、氯化鉀 (potassium chloride)、氫化鈣 (cadium chloride) 等購自日本林純藥株式會社。
6. 鐵氰化鉀（potassium ferricyanide）購自日本片山試藥株式會社。
7. 過氧化氫(hydrogen peroxide)、硫酸銅(ferric sulfate pentahydrate)、硫酸鉀(copper sulfate pentahydrate)購自日本和光純藥工業株式會社。
8. Trolox（6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic Acid）購自美國 Aldrich 公司。
9. 硫酸（sulfuric acid）、磷酸二氫鉀（potassium phosphate,Monobasic）、酚（phenol）、氫氧化鈉（sodium hydroxide）等購自台灣聯工化學試藥。
10. 抗生素 ampicillin 購自德國 Gerbu 公司。
11. 酚（phenol）、硫酸（sulfuric acid）、磷酸二氫鉀（potassium phosphate,Monobasic）、氫氧化鈉（sodium hydroxide）等購自台灣聯工化學試藥。
12. 乙醇 99.5% (ethanol)、果糖（fructose）、葡萄糖（glucose）、麥芽糖（maltose）、螢光染劑 Aniline blue 購自德國 Ferak 公司。
13. 乙醇 95% (ethanol) 購自台灣菸酒公賣局。
14. 甲醇（methanol）、蔗糖（sucrose）、氰甲烷（acetonitrile）、等購自美國 J. T. Baker 公司。
15. 乙醯丙酮（acetylaceton）購自英國 Alfa Aesar 公司。
16. 透析膜（WMCO 6000-8000）購自比利時 Orange Scientific 公司。
17. 碳酸氫鈉（sodium bicarbonate）購自日本 OSAKA 公司。
18. RPMI 1640（粉末）、DMEM / high glucose（粉末）、胎牛血清（fetal bovine serum）、Trypsin–EDTA、L-麩胺酸（L-glutamate）、非必需胺基酸（non-essential amino acid）、丙酮酸鈉（sodium pyruvate）購自美國 Gibco 公司。
19. Pullan 購自日本 Showa Denko 公司。
二、試驗儀器

1. 恆溫培養箱：FIRSTEK\(^\text{TM}\) (Model-RI100、Model-RI150及Model-TG5)；
   TKS（Model-LTI601），Firstek公司，台灣。

2. 高溫高壓滅菌釜：永大明儀器公司，台灣。

3. pH meter：inolab（Model-Level 1），W.T.W.公司，德國。

4. 冷凍高速離心機：HITACHI（Model-himac CR22G II），日立儀器公司，日本。

5. 高效能液相層析儀：HITACHI（Model-L6000）pump，Bischoff RI
   Detector（Model-8110），UV-VIS Detector（Model-L-7420）HITACHI
   (Model-D2500) chromatointegrator積分儀，日立儀器公司，日本。

6. 微電腦控制型離心機：Model-CN 2200，HSIANGTAI公司，台灣。

7. 熱風乾燥機：Model-RHD 603，RISEN公司，台灣。

8. 冷凍乾燥機：Model-Freeze dryer FD 5N，EYELA公司，日本。

9. 桌上型沸騰式發酵槽：MG1000S-7L，百歐生技公司，台灣。

10. 旋轉減壓濃縮機：Model-VV2000，Heidolph公司，德國。

11. 迴轉式振盪低溫恆溫培養箱：Model-S302R，Firstek公司，台灣。

12. 水平式無菌操作檯：Model-TW 14U，LIAN SHEN公司，台灣。

13. 桌上型離心機：HITACHI（Model- UNIVERSAL 32R），日立儀器公司，日本。

14. 恆溫水浴鍋：TKS（Model-KB-02），KANSIN公司，台灣。

15. 分析天平：Model-AB104S，永力儀器公司，台灣。

16. 分光光度計：Model-Spectronic 601，環保儀器公司，台灣。

17. 酵素免疫分析儀ELISA reader (MRXII microplate reader)，DYNEX公司，美國
18. 螢光分光光度計：HITACHI（Model-F-1100 Fluorescence Spectrophotometer），日立儀器公司，日本。

19. 電腦分析軟體：SAS™ R9.1（SAS Institute Inc, USA）。

20. 電腦繪圖軟體：SigmaPlot-scientific Graphing Software Version 2000（Microsoft Inc, USA）。
三、試驗方法

（一）試驗流程

固態培養基種類試驗
（將桑黃菌培養於含薏仁、黑豆及燕麥之固體培養基）

液態深層培養
（氣舉式發酵槽）

確定最適桑黃菌生長之固態培養基質種類

最適固態培養條件探討
1. 溫度 2. 水添加量 3. 接菌量 4. 碳源 5. 氮源
6. 生長因子 7. 無機鹽類 8. 起始 pH 值

確定最適桑黃菌生長之固態培養基質及最適培養條件

未發酵燕麥基質、固態發酵桑黃燕麥、液態發酵發酵液

經熱水及乙醇萃取

多醣體分子量、β-(1→3)-D-glucan 相對含量測定

生物活性(抑菌力、抗氧化力、抑制癌細胞生長)測定
（二）菌種保存

参考 Martin (1964) 的方法。將培養於 PDA 平板培養基上之桑黃菌菌絲，於外緣部份以滅過菌的穿孔器（直徑 7mm）挖取菌絲塊並接種至 PDA 斜面培養基上，於 25℃培養 5~7 天至菌絲佈滿斜面，再倒入減菌冷卻後之礦物油覆斜面（超過最高斜面高度約1公分），置於 4℃保存，此即為保存菌種（stock culture）。每三個月活化並重複此步驟以確定菌種活性。

（三）菌種活化

將保存菌種上方的礦物油移去後，以過火之接種環挑取適當菌絲塗抹在 PDA 平板培養基上，於 25℃下培養至新生菌絲長出，再以滅過菌之穿孔器挖取外緣部分菌絲塊，移種於另一 PDA 平板基中央，於 25℃培養 5 天後，重複以穿孔器取菌絲塊再移種一次即完成活化。

（四）種菌培養

將活化後之菌絲，以滅過菌之穿孔器挖取 2 塊外緣部分的菌絲塊後，置入含 50ml 基礎培養基之有溝三角錐瓶（250ml）中，於 30℃震盪培養（150 rpm）5 天，培養液中會形成直徑約為 1cm 之菌絲球，此即為種菌（seed culture）。

（五）種菌懸浮液製作

將震盪培養所得種菌（含培養液），以高速攪拌機打碎 5 次（20 秒/次），間隔時間為 10 秒，所得菌絲液即為種菌懸浮液，亦為爾後固態發酵及液態發酵之接種源。
（六） 固態培養基試驗

秤取固態基質（薏仁、黑豆、燕麥顆粒）15g 於225ml 廣口瓶中，以鋁箔紙將瓶口封蓋後加水浸泡 2 小時，置入滅菌釜中進行滅菌 (121℃/15 分鐘)。等待冷卻後，在無菌操作台內將固態基質移至 10cm 無菌培養皿中，再將桑黃菌種懸浮液接種至固態培養基質，接種完成後將其移至恆溫培養箱中培養 0~20 天，培養期間每兩天取樣分析（取整個培養皿樣品），藉由分析葡萄糖胺（glucosamine）之含量，間接換算其生物質（biomass）含量，確定最適桑黃菌生長之固態培養基質後，利用單因子變動試驗探討其最適培養條件。探討的因子包括：

(1) 生長天數：0、2、4、6、8、10、12、14、16、18、20 天，分析其生物質含量及 pH 值之變化情形。

(2) 培養溫度：固態基質接入菌種後攪拌均勻，以 20℃、25℃、30℃及 35℃ 四種不同溫度進行測試。

(3) 水添加量：固態基質分別加入 40%、50%、60% 及 70%（v/w）的水量進行測試。

(4) 接菌量：分別接種 1ml、3ml 和 5ml 之種菌懸浮液至固態基質中進行測試。

(5) 碳源：選用三種單醣（fructose, glucose, mannose）及三種雙醣（lactose, maltose, sucrose）進行測試，添加量均為 1%（w/w）。

(6) 氮源：選用三種有機氮源（peptone, yeast extract, urea）與三種無機氮源（NH₄NO₃, NH₄H₂PO₄, (NH₄)₂SO₄）等六種氮源進行測試，添加量均為 1%（w/w）。


(7) 生長因子：選用 corn steep liquor (CSL)、thiamine、riboflavin、ascorbic acid 及 folic acid 等 5 種生長促進物質進行測試，添加量均為 0.3% (w/w)。

(8) 無機鹽類：選用 MgSO₄、NaCl、KCl、CaCl₂、FeSO₄、CuSO₄ 及 ZnSO₄ 等 7 種無機鹽類進行測試，添加量為 0.1% (w/w)。

(9) 起始 pH：將固態基質培養起始 pH 調至 4、5、6、7、8 等 5 種不同起始 pH 進行培養，測試桑黃菌在不同起始 pH 環境中生長情況。

（七）穀物基質溶解度、膨潤力及吸水指標之測定

採用 Schoch (1964) 之方法並加以修飾。分別配置 10ml，1%(w/v) 的穀物樣品粉末懸浮液於玻璃試管內，置入滅菌釜中進行加熱 (121°C/15 分鐘)，待其冷卻後將樣品懸浮液倒入已恆重之離心管(W)中，以 15,000rpm 離心 20 分鐘。取其上清液至已恆重之燒杯(W₀)中，並於烘箱中烘乾後秤重(W₁)；離心管內之沉澱物部分則直接秤重(W₂)。

計算公式如下：

溶解度 (%) = \left[ \frac{(W₁ - W₀)}{樣品重} \right] \times 100

膨潤力 = \left( W₂ - W₁ \right) / \left[ \text{樣品重} \times (1 - \text{溶解度}/100) \right]

吸水指標 = \left( W₂ - W \right) / \text{樣品重}
（八）發酵槽試驗

根據吳（2009）研究以三種不同形式發酵槽（攪拌式、氣泡式和氣舉式）液態發酵桑黃菌 *P. linteus* 的結果顯示，以氣舉式發酵槽培養之桑黃菌能有效的消耗果糖轉換成胞外多醣體與菌絲體，而較其它兩者有較高的多醣產率和菌絲體產率。因此，本試驗採用氣舉式發酵槽液態培養桑黃菌。

氣舉式發酵槽（air lift fermentor）：

1. 培養溫度：30℃
2. 攪拌葉片：無
3. 攪拌速度：無
4. 接種量：5%（v/v）種菌懸浮液
5. 通氣量：1 vvm
6. 起始pH：5.4
7. 操作體積：5 L

培養基組成：

<table>
<thead>
<tr>
<th>成分</th>
<th>量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fructose</td>
<td>10 g</td>
</tr>
<tr>
<td>Yeast extract</td>
<td>10 g</td>
</tr>
<tr>
<td>MgSO₄·7H₂O</td>
<td>1 g</td>
</tr>
<tr>
<td>Corn steep liquor</td>
<td>3 g</td>
</tr>
<tr>
<td>Water</td>
<td>1000 ml</td>
</tr>
<tr>
<td>pH</td>
<td>5.4</td>
</tr>
</tbody>
</table>
（九） 抑制癌细胞生長能力測定

1. 試驗細胞株

人類肺腺癌細胞 (A-549) Human lung carcinoma cell
人類乳癌細胞 (MCF-7) Human breast adenocarcinoma cell
人類肝癌細胞 (HepG2) Human hepatoblastoma cell

2. 細胞培養與繼代

將培養基置於 37℃水浴槽回溫，再移入無菌操作台內備用。自液態氮桶中取出實驗細胞株 A-549、MCF-7 及 HepG2 之冷凍小管，置於 37℃水浴槽中快速解凍，以 70%酒精擦拭試管外壁後移入無菌操作台內。分別加入已解凍之 A-549、MCF-7 及 HepG2 細胞懸浮液於 10cm 培養皿，再分別緩慢加入 10ml 的肺腺癌 (A-549) 細胞培養基 (RPMI1640)、乳癌 (MCF-7) 細胞培養基 (RPMI1640) 及肝癌 (HepG2) 細胞培養基 (DMEM / high glucose)，培養在 5% CO₂ 之 37℃恆溫培養箱中培養 1~2 天，待細胞長至九分滿時，移去培養液，以 PBS (phosphate buffer saline) 清洗附著於培養皿上的細胞，加入 1.5ml 之 trypsin-EDTA 於 5% CO₂ 之 37℃恆溫培養箱中反應 3~5 分鐘，使貼附於培養皿之細胞懸浮，再加入適量之培養液終止 trypsin-EDTA 反應，再依實驗需求不同，將細胞液平均分配到含有新培養液的培養皿中，進行繼代培養。
3. 實驗方法

將三種培養好之癌細胞細胞液，經由血球計數器計算細胞數目，將細胞數定量為 $1 \times 10^5$ cells/ml，取 $100\mu$l/well 細胞懸浮液置入 96-well plate 中（$1 \times 10^4$ cells/well），於 5% CO$_2$ 之 37℃ 恆溫培養箱培養 24hr 後，加入 100μl/well 不同濃度的樣品（溶於培養基），培養於 5% CO$_2$ 之 37℃ 恆溫培養箱 48hr。再以 MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) 比色法 (MTT assay) 分析不同樣品對於細胞存活率的影響。
四、分析方法

(一) 固態培養桑黃菌之生物質(biomass)測定

1. 桑黃固態發酵樣品前處理

將培養後之固態樣品從培養箱中移至於60℃烘箱中烘乾，將其磨成粉末後經篩網過篩 (40 mesh)，即可得固態樣品粉末。

2. 生物質(biomass)含量測定

秤取0.4g固態樣品粉末與5ml72%H₂SO₄，置入125ml三角錐瓶後，再以54ml RO水稀釋，置入滅菌釜中121℃水解反應2hr，再以葡萄糖胺水解液以10N與0.5N NaOH中和至pH=7。再以葡萄糖胺比色法分析樣品中葡萄糖胺含量，間接換算成生物質(biomass)含量。

葡萄糖胺比色法是採用Elson-Morgan法 (Elson and Morgan, 1933)，並參考唐等人(2006)之方法加以修飾。Elson-Morgan法其測定原理是在一定的溫度下過量的乙醯丙酮(acetylacetone)鹼性溶液會將葡萄糖胺2號碳上的氨基乙醯化，形成帶有吡咯環的N-乙醯衍生物，再與對二甲氨基苯甲醛(ρ-dimethylaminobenzaldehyde)在酸性乙醇溶液中縮合形成紫紅色物質。該縮合物於波長525nm下具有最大吸光值，因此樣品中葡萄糖胺含量越高其吸光質就越高。

測定步驟：

取前述水解液1ml樣品加入0.5ml乙醯丙酮試劑沸水浴加熱25min，冷卻後加入1ml乙醇及0.5ml對二甲氨基苯甲醛試劑震盪混勻，再加入
2ml 乙醇，混合後置於 60℃水浴反應 1hr，利用分光光度計測定混合液之 OD_{525} 值，並比對葡萄糖胺標準曲線（附圖一）後，即可計算樣品中葡萄糖胺之含量。再經比對菌絲體乾重對應葡萄糖胺含量之標準曲線（附圖二）即可得樣品中 biomass 之含量。

試劑配置：

(1) 鹼性乙醯丙酮溶液：取 3.5ml 乙醯丙酮，溶於 50ml 1.2M 的碳酸鈉溶液中，混合均勻，需現配現用。

(2) 酸性對二甲氨基苯甲醛溶液：取 1.33g 對二甲氨基苯甲醛，溶於 25ml 無水乙醇及 25ml 塗改酸的混合液中，以棕色瓶保存，需現配現用。

3. 葡萄糖胺標準曲線測定

秤取葡萄糖胺 0.1g 溶於 10ml 蒸餾水中，取上述溶液 5ml 稀釋至 100ml 備用 (500 μg/ml)，再以此溶液逐步稀釋成不同濃度之葡萄糖胺標準液 (10、20、30、40、50、60 及 70 μg/ml)，並且以不含葡萄糖胺之蒸餾水作為空白對照組。利用葡萄糖胺比色法測定混合液之 OD_{525} 值即可得葡萄糖胺標準曲線。

4. 菌絲體冷凍乾燥粉末製備

將種菌懸浮液接種 (5%, v/v) 接種至 250ml 有溝三角錐瓶（含 50ml 修飾培養基）於 30℃ 震盪培養 (150 rpm) 12 天，再將菌絲體培養液以濾紙 (No.2) 進行抽氣過濾，並以 RO 水清洗數次後，收集菌絲體進行冷凍乾燥處理之。
5. 菌絲體乾重對應葡萄糖胺含量標準曲線測定

精確稱取不同重量之冷凍乾燥之菌絲體（0.1、0.2、0.3、0.4及0.5 g）以前述方式進行酸水解可得含葡萄糖胺水解液，再利用葡萄糖胺比色法測定水解液中葡萄糖胺的含量，即可得菌絲體乾重對應葡萄糖胺含量之標準曲線。

(二) pH 值測定

秤取0.2g固態樣品粉末，加入20ml RO水，經Vortex-mixer震盪混合30秒後，使用pH meter（inolab Level 1）測定之。

(三) 固態培養多醣體含量之測定

1. 多醪體之萃取

精秤固態樣品粉末1g，加入20ml RO水，置入滅菌釜中121℃加熱1hr後，離心（15000 rpm，10 min）取其含基質中澱粉及菌絲多醪體之上清液做為樣品。加入1ml新鮮配置之澱粉酶（α-amylase, Sigma）溶液（澱粉酶 mg/pH6.9磷酸緩衝液 ml）至樣品中分解澱粉為小分子糖類，並且以碘液測定澱粉是否完全分解，再以透析模（MWCO 6000–8000）進行透析24hr將小分子糖類透析至膜外，取透析膜內之透析液定量至一定體積後分析透析液中菌絲多醪體含量。

2. 多醪體含量之測定

參考Dubois等人（1956）之酚硫酸法（phenol-sulfuric acid method）
並加以修飾。其原理為醣類物質與硫酸反應作用形成糖醛類衍生物，此糖醛衍生物與苯酚作用後縮合成橙黃色物質，此物質在波長 490nm 下具有最大吸光值。

測定步驟：

（1）取 1ml 多醣體之透析稀釋液，加入 0.5ml 5%酚溶液及 2.5ml 98%濃硫酸，混合後靜置 20 分鐘。

（2）置於 25℃水浴中 10 分鐘

（3）測定混合液之 OD_{490} 值並比對葡萄糖標準曲線（附圖三）後，即可得待測液中多醣體之葡萄糖相等量 X（mg/ml），換算成透析液中多醣體含量時，須將此一測定值乘以稀釋倍數及 0.9（李與賴，1976）。

多醣體含量（mg/g）＝X × 稀釋倍數 × 0.9 ×（原多醣體液體積/透析液體積）

3. 葡萄糖含里標準曲線之測定

精確秤取葡萄糖 0.1g 溶於 10ml 蒸餾水中，取上述溶液 5ml 稀釋至 100ml 備用（0.5 mg/ml）。再以此溶液逐步稀釋成不同濃度之葡萄糖標準液（0.01、0.02、0.04、0.06、0.08 及 0.1 mg/ml），並且以不含葡萄糖之蒸餾水作為空白對照組，再利用酚硫酸法測定混合液之 OD_{490} 值，即可得葡萄糖標準曲線。

(四) 多醣體分子量之測定

參考呂等人（2001）之方法。多醣體分子量以膠體滲透層析（gel permeation chromatography, GPC）法進行分析。其固定相為孔徑大小相
不同的物質，可將移動相中不同分子量的物質經由其在固定相中所流動的路徑長短加以區分，大分子物質會因為難以進入孔徑內而隨著移動相在孔徑間隙流出，滯留時間短，較快被沖提出來；小分子物質則容易進入孔徑間隙，故滯留時間長，較慢被沖提出來，以達到分離不同分子量的效果，又稱為膠體過濾層析法（gel filtration chromatography）或分子排斥層析法（size exclusion chromatography）。

取多醣體之透析液、液態深層培養之發酵液和燕麥基質之多醣萃取液，於4℃冷凍離心（10000 rpm，30 min）後，取其上清液經適當稀釋後，再以0.2μm濾膜過濾，取15μl濾液進行分子量分佈之分析，分析條件如下：

分析管柱：PolySep-SEC-P 300×7.80mm，(Phenomenex, model 5000)。

管柱溫度：40℃

移動相：去離子水

流速：0.8ml / min

幫浦：Pump （Hitachi, model L-6000）

偵測器：RI detector （Bischoff, model 8110）

積分儀：Chromatointegrator （Hitachi, model D-2500）

標準品：pullulan（分子量 21100、47100、107000、200000、344000及 708000 Daltons or Da, retention time 分別為 11.94、11.52、10.89、10.34、9.70 及 9.03 分鐘）標準曲線如附圖四。
(五) 多醣體中 β-(1→3)-D-glucan 相對含量測定

多醣中的 β-(1→3)-D-glucan 可利用螢光染劑 aniline blue 進行標定定量。早期 anilina blue 是用來檢測植物組織中的癒創多醣（callose），而後經鑑定其結構為 β-(1→3)-D-glucan，於是進而證實 aniline blue 對 β-(1→3)-D-glucan 的專一反應性。Aniline blue 螢光染劑中成份 sirofluor(sodium 4,4’-[carbonylbis-(benezene-4, 1-diyl) bis(imino)] bisbenzene-sulphonate)與 β-(1→3)-D-glucan 結合後，在激發波長（excitation wavelength）395nm、放射波長（emission wavelength）495nm 螢光圖譜上會出現 aniline blue-β-(1→3)-D-glucan 錯合物的螢光波峰，進而定量 β-(1→3)-D-glucan (張，2003)。

測定步驟：

(1) 取前述多醣體之透析液或液態培養發酵液進行冷凍乾燥，再以 RO 水定量至濃度 10 mg/ml 備用之。

(2) 取樣品 1ml，加入 0.3N NaOH 定容至 3ml 後攪拌30分鐘使其完全溶解。

(3) 以 HCl 調整 pH 值為 11.50±0.05，再加入 pH11.50 之 0.05M Na₂HPO₄-NaOH 緩衝液（內含 0.5M NaCl）定容至 10ml。

(4) 取 1ml 溶液加入 0.1ml 濃度 1mg/ml 之 aniline blue，震盪混合均勻後靜置 2 小時。

(5) 以螢光分光光度計進行檢測，激發波長為 395nm，放射波長為 495nm。

實驗中以海藻多醣 (laminarin) 為標準品，其標準檢量曲線如附圖五，
β-(1→3)-D-glucan 相對含量為每毫升海藻多醣當量 (laminarin equivalent; LE) 所含之 β-1,3-D-glucan 微克數 (μg/ml LE)。

(六) 抑菌能力之測定

主要測試固態及液態發酵樣品之熱水與乙醇萃取物抑制不同病原細菌生長的能力。

1. 固態培養桑黃發酵物樣品粉末製備

將培養後之固態樣品從培養箱中移於 60℃烘箱中烘乾，將其磨成粉末後經篩網過篩 (40 mesh)，即可得固態發酵樣品粉末。

2. 發酵液樣品粉末製備

將含菌絲體之發酵液以濾紙 (No.2) 進行抽氣過濾去除菌絲體，收集發酵液進行冷凍乾燥，即得液態發酵樣品粉末。

3. 未發酵固態基質樣品粉末製備

將未經桑黃發酵之燕麥固態基質，放置於烘箱中烘乾，將其磨成粉末後經篩網過篩 (40 mesh)，即可得未發酵固態樣品粉末。

4. 熱水及乙醇萃取物製備

(1) 熱水萃取

取上述樣品粉末於三角錐形瓶中，以 1:20 (g/ml) 比例加入 RO 水後，置於加熱攪拌器上以隔水煮沸萃取 3 小時。冷卻後離心收取上清液，將所得之沉澱物以相同條件再萃取一次，收集兩次所得到之清液進行冷凍乾燥。再以 RO 水定量至不同濃度之待測液備用。
(2) 乙醇萃取

取上述樣品粉末於三角錐形瓶中，以 1:10 (g/ml) 比例加入乙醇，於 30℃，150rpm 震盪萃取 24 小時，經離心後收取上清液，將所得之沉澱物以相同條件再萃取一次，收集兩次所得之清液以 40 ℃減壓濃縮至乾，再以乙醇定量至不同濃度待測液備用。

(3) 萃取率（extraction yield）計算

萃取率（extraction yield, %）= \[\frac{\text{萃取物乾重 (w)}}{\text{樣品粉末重 (w)}}\] \times 100

5. 測定步驟

採用 Kirby-Bauer 法（Lim, 1998）。首先將培養好之待測菌液（nutrient broth/37℃/2days）以傾倒法使菌液均勻發佈在 nutrient agar (NA) 平板培養基內，再將含有 10μl 待測液圓形濾紙片（直徑 0.55 cm）平貼在培養基上，置入 37℃培養 48 小時後，利用螺旋測微尺測量抑菌環透明圈的兩條直徑（如下圖所示），相加除以二之後再減去濾紙片直徑（約 0.55 公分），即為萃取物之抑菌環大小。待測菌液之抑菌力經比對 ampicillin 抑菌濃度標準曲線（附圖六~附圖十一）後換算為相等於 ampicillin 之抑菌濃度 (mg/l)。
(七) 抗氧化能力之測定

取前述(六)-1、2、3、4 製備完成的桑黃固態、液態發酵及未發酵燕麥基質之萃取液(熱水、乙醇)做彼等抗氧化能力的分析。

1. 清除 $\alpha,\alpha$-diphenyl-$\beta$-picrylhydrazyl 自由基 (DPPH·) 能力分析

參考 Shimada 等人 (1992) 之方法。食物中的脂質在自行氧化的過程中會產生自由基而造成脂質的酸敗，常見的抗氧化物可扮演供氫者 (hydrogen donor) 來清除脂質過氧化物自由基 (peroxyl radical)。DPPH· ($\alpha,\alpha$-diphenyl-$\beta$-picrylhydrazyl radical) 是一種穩定的自由基，當其溶於甲醇中會呈現藍紫色，在 517nm 下有較強的吸光值。當測試的樣品具抗氧化能力時，則可清除自由基 (供氫還原)，此時藍紫色的 DPPH 甲醇溶液顏色會轉成橙黃色而降低 517nm 之吸光值，吸光值降低愈多，代表樣品之抗氧化力愈強。

$$DPPH \cdot + AH \rightarrow DPPH: H + A \cdot$$

(violet) (decolorized)

實驗步驟：

(1) 取 1ml 不同濃度之熱水、乙醇萃取物待測液及標準品 (BHA、ascorbic acid 及 $\alpha$-tocopherol) 的甲醇溶液 (實驗組) 與純甲醇溶液 (對照組) 加入 1ml 新鮮配製的 0.008% DPPH 甲醇溶液。

(2) 震盪均勻混合反應 30 分鐘後，測定混合液之 OD_{517}。

$$DPPH \text{ 自由基清除率 (scavenging effect, \%)} = \left( \frac{OD_{\text{control}} - OD_{\text{sample}}}{OD_{\text{control}}} \right) \times 100\%$$ 清除率愈高，代表樣品抗氧化能力愈好。
實驗中以脂溶性抗氧化劑 BHA、ascorbic acid 及 α-tocopherol 作為正對照組，附圖十八~附二十圖為彼等與 DPPH • 反應之標準曲線。未加樣品者為控制組，實驗結果以 IC_{50}（清除 50% DPPH 自由基所需之最低濃度）表示。

2. 螯合亞鐵離子能力分析

參考 Decker 等人（1990）之方法。金屬離子的促氧化作用經常是造成脂質過氧化的主要因素，藉由氧化還原反應 (redox cycle)，少量的金屬離子便可有效的產生自由基，並加速脂質氧化的進行；在多種金屬離子中，Fe^{2+} 經常是最具影響力的助氧化劑。實驗原理為在甲醇溶液中，藉 ferrozine 與 Fe^{2+}螯合，產生 ferrozine- Fe^{2+}錯化合物為紫紅色之反應

\[ \text{Fe}^{2+} + \text{ferrozine} \rightarrow \text{ferrozine- Fe}^{2+} \text{ complex} \]

（violet）

此錯化合物在 562 nm 下有強的吸光值，若 Fe^{2+} 與樣品結合，減少 ferrozine- Fe^{2+}的生成，則吸光值會降低，由此可判斷樣品螯合亞鐵離子的能力，當吸光值愈低，表示樣品螯合亞鐵離子的能力愈強，其抗氧化力愈強。

實驗步驟：

(1) 取 1ml 不同濃度之熱水、乙醇萃取物待測液及標準品（EDTA）水溶液分別加入 3.7ml 蒸餾水、0.1ml 之 2mM FeCl₂及 0.2ml 之 5mM ferrozine。
(2) 混合後於室溫靜置反應 20 分鐘，測定混合液之 OD_{562}。

亞鐵離子螯合率 (Ferrous ion chelating acitivy, %) = \frac{(\text{OD}_{\text{control}} - \text{OD}_{\text{sample}})}{\text{OD}_{\text{control}}} \times 100%

實驗中以金屬螯合劑 EDTA 作為正對照組，附圖二十七為彼等與 Fe^{2+} 離子螯合反應之標準曲線。未加樣品者為控制組，實驗結果以 IC_{50} (螯合 50% Fe^{2+} 離子所需之最低濃度) 表示。

3. 還原力分析

參考 Oyaizu (1986) 之方法，還原力是分析樣品將赤血鹽 (potassium ferricyanide, K_3Fe(CN)_6) 中 Fe^{3+} 還原為黃血鹽 (potassium hexacyanoferrate, K_4Fe(CN)_6) 之亞鐵氰錯離子 (Fe^{2+}) 的能力，此亞鐵氰錯離子 (Fe^{2+}) 再與 Fe^{3+} 反應產生普魯士藍 (Prussian blue, Fe_4[Fe(CN)_6]_3)，其反應式如下：

\[
K_3Fe(CN)_6 + \text{sample} \rightarrow K_4Fe(CN)_6 + \text{sample-oxide}
\]

\[
3K_4Fe(CN)_6 + 4Fe^{3+} \rightarrow Fe_4[Fe(CN)_6]_3 + 12K^+ \quad \text{(blue)}
\]

普魯士藍在波長 700nm 下有最大吸收值，根據其吸收光值之高低，可評估樣品還原能力之強弱；吸光值愈高表示樣品還原能力愈強。還原力在抗氧化表現上係為具有還原過氧化物 (peroxide) 之能力，進而達到抗氧化之效果。
實驗步驟：

（1）取 0.5ml 不同濃度之熱水、乙醇萃取物待測液及標準品（BHA、ascorbic acid 及 α-tocopherol）的甲醇溶液分別加入 2.5ml 之 0.2M磷酸鹽緩衝液（pH 6.6）及 2.5ml 之 1% 鐵氰化鉀混合均勻。

（2）混合液於 50℃ 水浴槽反應 20 分鐘。

（3）取 2.5ml 10% 三氯醋酸加入混合液後離心（3000 rpm/10 分鐘）。

（4）取 2.5ml 上清液，加入 2.5ml 蒸餾水及 2.5ml 0.1% 三氯化鐵。

（5）震盪均勻混合反應後，測定混合液之 OD700。

實驗中以抗氧化劑 BHA、ascorbic acid 及 α-tocopherol 作為正對照組，附圖三十四~附三十六圖為彼等還原力之標準曲線。未加樣品者為控制組，實驗結果以 IC50（吸光值達到 0.5 所需之最低濃度）表示。

4. 總抗氧化力能力分析

活性氧(reactive oxygen species, ROS)主要包括羥基自由基、超氧自由基和過氧化氫。在細胞或組織的正常生理代謝過程中會產生活性氧，而一些環境因子例如紫外照射、γ 射線照射、環境污染等也可能誘導活性氧的產生。活性氧累積會產生氧化壓力(oxidative stress)，導致各種疾病產生(腫瘤、風濕性關節炎、糖尿病、中樞神經系統疾病等)。抗氧化物可以阻止活性氧誘導累積的氧化壓力(oxidative stress)。一個體系內的各種抗氧化分子清除自由基的能力即該體系的總抗氧化能力。本實驗參考 Miller 等人（1993）及 Arnao 等人（1996）之方
法。Horseradish peroxidase 會催化 $\text{H}_2\text{O}_2$ 及 ABTS (2,2-Azino-bis (3-ethylbenzo-thiazoline-6-sulfonic acid) 反應使 ABTS 上之一個電子進行轉移形成 ABTS·$^+$。

$$\text{H}_2\text{O}_2 + \text{ABTS} \xrightarrow{\text{peroxidase}} 2\text{H}_2\text{O} + \text{ABTS} \cdot^+$$

ABTS·$^+$ 為具穩定藍色之陽離子自由基，於波長 734nm 下具有最大吸光值，加入抗氧化劑可提供電子還原 ABTS·$^+$ 使其吸光值降低或消失，故可利用此一特性測試水溶性樣品清除自由基之能力。樣品與 ABTS·$^+$ 自由基作用後，OD$_{734}$ 下降越多，則表示樣品對 ABTS·$^+$ 自由基之清除能力越強，抗氧化力越強。

實驗步驟：

(1) 將 horseradish peroxidase、ABTS 與 $\text{H}_2\text{O}_2$ 混合均勻並調整三者之最後濃度分別為 4.4unit/ml、100μM 與 50μM。

(2) 於 30℃下避光反應一小時，使其形成藍綠色穩定的 ABTS·$^+$ 自由基反應試劑。

(3) 加入 0.25ml 不同濃度之熱水、乙醇萃取物待測液及標準品（trolox）之乙醇溶液混合均勻後反應 10 分鐘，測定混合物之 OD$_{734}$。

總抗氧化能力 (total antioxidant capacity, %) = $\frac{(\text{OD}_{\text{control}} - \text{OD}_{\text{sample}})}{\text{OD}_{\text{control}}} \times 100\%$

實驗中以 trolox 為正對照組。附圖四十三為其與 ABTS·$^+$ 自由基反應之標準曲線。未加樣品者為控制組，實驗結果以 IC$_{50}$（抑制 50% ABTS·$^+$ 活性所需之最低濃度）表示。
（八）癌細胞存活率試驗

本試驗採用 MTI assay 方法來測定樣品之熱水及乙醇萃取物對於三種人類癌細胞是否具抑制其生長的能力。試驗中取前述(六)-1、2、3、4 製備完成的桑黃固態、液態發酵及未發酵燕麥基質之萃取液(熱水、乙醇)，以細胞培養液定量至不同濃度(125、250、500 及 1000 μg/ml)做為待測液，爾後以此待測液加入癌細胞細胞液中做癌細胞存活率測試。

MTT assay 原理:

MTT assay 是一種常見用在分析細胞增生(cell proliferation)、存活率(percent of viable cells)和細胞毒性(cytotoxicity)的分析方法。其原理是利用 MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) 黃色水溶性固體可被活細胞吸收，並在粒線體中被 MTT 去氫酶 (MTT dehydrogenase) 還原成藍紫色的 MTT formazan 堆積在細胞中，其反應如下圖所示:

![MTT dehydrogenase](image)

加入 MTT 試劑反應 4 小時後，再加入 DMSO (dimethyl sulfoxide) 將 formazan 溶出，formazan 在波長 590nm 有最大吸光值，以免疫酵素分析儀 (ELISA reader) 在 590nm 之波長測其吸光值。當吸光值越大表
示存活的細胞越多。

實驗步驟：

(1) 將三種培養好之癌細胞細胞液，經由血球計數器計算細胞數目，將細胞數定量為 $1 \times 10^5$ cells/ml，取 100μl/well 癌細胞懸浮液置入 96-well plate 中（$1 \times 10^4$ cells/well），於 5% CO₂ 之37°C 恆溫培養箱培養 24hr。

(2) 以微量吸管移除 well 內細胞上清液，留下貼壁生長之癌細胞

(3) 於每一 well 中加入 100μl 不同濃度之萃取物待測液（溶於細胞培養液），與癌細胞共同培養於 5% CO₂ 之 37°C 恆溫培養箱 48hr。

(4) 以微量吸管移除 well 內萃取物待測液後，加入黃色 MTT 溶液 (5mg/ml PBS)，置於 5% CO₂ 之 37°C 恆溫培養箱反應 4hr。

(5) 吸除上清液，加入 100μl PBS 將殘留之 MTT 溶液清洗乾淨

(6) 加入 100μl/well 的 DMSO 反應 20 分鐘，使紫色之 formazan 溶出。

(7) 用 ELISA reader 測定波長 590nm 之吸光值推算其細胞存活率。

MTT assay 分析細胞存活率公式如下：

细胞存活率（cell viability, %） = (OD sample / OD control) × 100%

细胞存活率越低，表示樣品抑制癌細胞生長之能力越強。
統計分析

試驗所得結果以平均值±標準偏差(Mean±SD)表示，試驗所得資料以SAS統計套裝軟體(SAS, 1996)進行變方分析(analysis of variance)及差異性顯著分析(Duncan’s new multiple range test)之統計分析法估計結果是否有顯著差異(P<0.05)，並且使用Student’s t-test來評估數據間的差異性。p<0.01時表示極顯著差異，p<0.05時表示達顯著差異，p>0.05則表示為沒有顯著差異。(沈，1993)。
肆、結果與討論

一、培養桑黃菌之固態基質種類試驗

本試驗的目的為探討桑黃菌 PL02（Phellinus linteus）培養在三種不同種類的固態穀物培養基（燕麥、黑豆和薏仁）中生長的情況，藉由測定樣品中葡萄糖胺（glucosamine）的含量換算成桑黃菌絲體的生物質（biomass）來觀察其在不同基質上生長的狀況，以決定後探討固態發酵培養條件時所採用的穀物培養基種類。

圖八為桑黃菌接種於薏仁固態培養基之生長曲線，結果顯示桑黃薏仁在培養初期第 0-8 天時，桑黃菌絲體呈現緩慢生長的趨勢，在培養天數第 8 天後菌絲體明顯快速生長，桑黃薏仁之菌絲體含量可在第 12 天達到最高之 381.53 mg/g。圖九為桑黃黑豆固態培養期間之生長曲線，結果顯示桑黃黑豆在培養 0-14 天時之桑黃菌絲體都無明顯增長的趨勢，在培養天數第 16 天後菌絲體達到最高含量 210.44 mg/g。圖十為桑黃燕麥固態培養期間之生長曲線，結果顯示在培養初期第 0-4 天時，桑黃菌絲體呈緩慢生長，而從第 6 天開始菌絲體開始快速的生長，桑黃燕麥之菌絲體含量可在第 12 天達到最高之 494.11 mg/g。

在最終 pH 值方面，桑黃菌於薏仁、黑豆及燕麥固態培養期間 pH 值的變化情形皆會隨著培養時間的增加而有逐漸下降的現象，此外，在達最高量菌絲體含量之培養天數時皆具有最低或較低的 pH 值之趨勢（圖八-十），原因可能為菌體在生長初期會產生一些有機酸（醋酸、草酸和丙酮酸等）導致環境中 pH 值下降（梁，2009），而之後兩者之 pH 值皆有逐漸上升的趨勢，可能原因為菌絲體在培養後期代謝過程中有機氮源被利用產生類似氨類之物質或菌體發生自體分解（autolysis）所導致的。

以上結果顯示，最高生物質（biomass）產量依序為燕麥組（494.11 mg/g）、薏仁組（381.53 mg/g）及黑豆組（210.44 mg/g），造成此結果的原因與穀
Fig. 8  Changes of biomass and final pH during growth of *Phellinus linteus* (30 °C / 20 days) on solid culture containing adlay.
Fig. 9  Changes of biomass and final pH during growth of *Phellinus linteus* (30 °C / 20 days) on solid culture containing...
圖十 桑黃菌（Phellinus linteus）於燕麥固態培養發酵期間（30 ℃/20 天）生物質及最終 pH 之變化

Fig. 10 Changes of biomass and final pH during growth of Phellinus linteus (30 ℃/20 days) on solid culture containing oat.
類基質本身理化特性例如顆粒大小、蒸煮方法、吸水性質等有很大的關係（羅，2004）。

圖十一~十三分別為桑黃菌於薏仁、黑豆和燕麥固態發酵期間（0-20天）菌絲生長情形。結果顯示，發酵期間以顆粒粒徑較小之薏仁及燕麥（圖十一、十三）菌絲生長速度較顆粒粒徑較大之黑豆（圖十二）為快，此結果亦符合前述發酵期間三種基質上生物質產生之情形（圖八~十），可能原因為較小穀物可提供相對較大的總表面積增加微生物與固體基質接觸的機會，因此微生物生長情況通常會比使用顆粒較大的基質好（羅，2004）。

培養初期桑黃菌絲體生長較緩慢，會在基質顆粒表面慢慢生長出纖細的白色菌絲，而在培養至約第六~十六天時，菌絲體就會開始快速生長佈滿整個基質表面並產生黃色菌絲體，而至培養後期第十六天後，可能因為養分和生長空間的不足，菌絲體開始老化產生較乾燥之黑色菌絲體（圖十一~十三）。

穀類基質的吸水性質與其溶解度、膨潤力和吸水指標有關。澱粉在溶液中會有吸水而使體積增加的現象，此現象稱為膨潤，因此膨潤力是指澱粉顆粒吸水膨潤的程度。溶解度則是澱粉顆粒在膨潤過程中溶出物溶解於水中的程度。吸水指標則是澱粉類與水發生鍵結之活性基多寡，這些活性基主要是羥基（hydroxyl group）及葡萄糖間的氧原子（inter-glucose oxygen atoms）（Holm et al.,1985；Tsai et al.,1997），穀類基質吸水性質愈佳，則上述三種測定值愈高。

表四為三種穀物基質經加水浸泡並加熱滅菌（121℃）後其溶解度、膨潤力和吸水指標的結果。溶解度和膨潤力的結果皆是以燕麥的 25.35%和 9.39%最高，並顯著（P < 0.05）高於薏仁（23.3%和 9.03%）及黑豆（14.4%和 6.63%）；吸水指標則是以燕麥（7.05%）與薏仁（6.90%）顯著（P < 0.05）高於黑豆（5.69%），但燕麥和薏仁間並無顯著差異。

綜合上述結果，以燕麥作為固態基質可得最高之生物質產量、較快之
菌絲生長速度及較佳之吸水性質，因此爾後實驗選定燕麥作為培養桑黃菌之固態基質；於探討不同培養條件對桑黃燕麥之菌絲體、多醣體產量影響時，則選定培養第 12 天之桑黃燕麥。
Fig. 11 The mycelia growth during growth of *Phellinus linteus* (30 °C / 20 days) on solid culture containing adaly.

圖十一 桑黃菌（*Phellinus linteus*）於薏仁固態培養發酵期間（30 °C /20天）之菌絲體生長情形。
Fig. 12 The mycelia growth during growth of *Phellinus linteus* (30 °C / 20 days) on solid culture containing black bean.
圖十三  桑黃菌（*Phellinus linteus*）於燕麥固態培養發酵期間（30 °C / 20 天）之菌絲體生長情形。

Fig. 13  The mycelia growth during growth of *Phellinus linteus* (30 °C / 20 days) on solid culture containing oat.
表四 薏仁、黑豆和燕麦基质於 121℃之吸水性質。

Table 4  Absorption property of adlay, black bean and oat media at 121℃.

<table>
<thead>
<tr>
<th>Absorption property</th>
<th>Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adlay</td>
</tr>
<tr>
<td>Swelling power (%)</td>
<td>9.03±0.04&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Solubility(%)</td>
<td>23.3±0.57&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Absorption index (%)</td>
<td>6.90±0.02&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

Each value is expressed as mean ± SD (n=3).

Values superscribed by different letters in the row are significantly different (P<0.05).
二、最適培養桑黃菌之固態發酵培養條件試驗

(一) 最適培養溫度探討

培養溫度是影響菌體生長及代謝反應的重要因子，例如生物體內的酵素活性，多醣的合成速率及產量等生物反應；Kim 等人（2001）發現桑黃菌種（P. linteus）菌絲體生長適合溫度在 25~30℃之間，而曾等人（2007）的研究發現桑黃菌在 16~36℃下皆能生長。因此本試驗採用四種不同培養溫度（20、25、30 及 35℃），探討不同培養溫度對桑黃菌絲生長及多醣體產生之影響。

結果（表五）顯示，培養溫度由 20℃提高到 30℃其生物質及多醣體含量逐漸的升高，在培養溫度 30℃時可得到最高的生物質(432.30 mg/g)及多醣體（45.48 mg/g）產量，且顯著（P＜0.05）高於其他實驗組；最終 pH 值亦以培養溫度 30℃組顯著（P＜0.05）低於其它實驗組，可能原因與菌絲體生長較佳產生較多有機酸使環境中 pH 下降有關。本試驗結果與吳（2009）利用平板培養基試驗探討最適桑黃菌（P. linteus）生長之培養溫度和梁（2009）利用三角搖瓶探討在液態培養環境中最適桑黃菌（P. linteus）生長之培養溫度皆為 30℃相符。因此爾後試驗皆以 30℃作為桑黃菌培養溫度。

(二) 最適培養基質水分含量探討

水分對於微生物的生長繁殖及代謝反應是個重要因子。在細胞外，養分溶解在水中，可加速它們穿越細胞膜進入細胞內；在細胞內，水是大多數化學反應的介質。一般固態發酵過程中，基質中水分含量在 30-80%，真菌培養最適水分含量則在 40-80%之間；較低的水分含量可降低被汙染的風險（廖，2003），因此本試驗採用四種不同水分含量（40、50、60 及 70%），
表五 不同培養溫度對桑黃菌（Phellinus linteus）於燕麥於固態培養期間（培養12天）生物質、多醣體及最終pH之影響

<table>
<thead>
<tr>
<th>Tempature</th>
<th>Biomass (mg/g)</th>
<th>Polysaccharides (mg/g)</th>
<th>Final pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>35℃</td>
<td>294.33±4.68 &lt;sup&gt;b&lt;/sup&gt;</td>
<td>39.66±1.16 &lt;sup&gt;b&lt;/sup&gt;</td>
<td>5.71±0.15 &lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>30℃</td>
<td>432.30±18.73 &lt;sup&gt;a&lt;/sup&gt;</td>
<td>45.48±0.74 &lt;sup&gt;a&lt;/sup&gt;</td>
<td>4.58±0.15 &lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td>25℃</td>
<td>257.17±28.47 &lt;sup&gt;b&lt;/sup&gt;</td>
<td>37.86±0.50 &lt;sup&gt;b&lt;/sup&gt;</td>
<td>5.78±0.19 &lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>20℃</td>
<td>253.49±3.12 &lt;sup&gt;b&lt;/sup&gt;</td>
<td>29.61±4.12 &lt;sup&gt;c&lt;/sup&gt;</td>
<td>6.56±0.09 &lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

Values superscribed by different letters in the same column are significantly different (P<0.05).

Each value is expressed as mean ± SD (n=3).

Incubation time = 12 days.
探討不同基質水分含量對桑黃菌絲生長及多醣體產生之影響。

結果(表六)顯示，水分含量由40%提高至60%可得到最高的生物質(480.13mg/g)及多醣體(43.41mg/g)產量，且顯著(P<0.05)高於其它實驗組。但將水分含量提高至70%時，其生物質與多醪體的含量反而降低，其可能原因為固態培養中基質間的氧氣是藉由擴散的方式在基質間空隙中傳輸以提供菌體生長所需，而過多的水分容易造成基質間氧氣擴散及供給不足的問題，影響菌絲體的生長及代謝(王，2004)。因此爾後實驗皆以60%水含量作為培養桑黃菌之基質水分含量。

(三) 最適培養接菌含量探討

實驗結果(表七)顯示，接菌量在5ml時有最高的生物質(533.11mg/g)及多醪體(45.34mg/g)產量，但與3ml組的生物質(530.17mg/g)及多醪體(45.20mg/g)產量並無顯著差異，而兩者皆顯著(P<0.05)高於1ml組之生物質及多醪體產量，可能原因1ml組接菌量過少使得菌體難以均勻分布在基質表面。三組之最終pH為4.56-4.96之間，且彼此間無顯著差異。雖然5ml組之生物質及多醪體產量較3ml組高，但考量本實驗所使用培養皿體積有限，接菌量愈高會加速基質養分的消耗和代謝物的累積，以致於培養後期菌體養分不足並且增加基質內水分含量，使基質變黏稠而不利菌絲生長。因此爾後實驗皆以3ml接菌量作為培養桑黃菌之起始接菌量。
表六 不同水添加量對桑黃菌（*Phellinus linteus*）於燕麥於固態培養期間（培養 12 天）生物質、多醣體及最終 pH 之影響

Table 6 Effect of different water supplementation on biomass, polysaccharide and final pH by *Phellinus linteus* on solid culture containing oats.

<table>
<thead>
<tr>
<th>Water supplementation</th>
<th>Biomass (mg/g)</th>
<th>Polysaccharides (mg/g)</th>
<th>Final pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>40%</td>
<td>258.46±15.75</td>
<td>21.89±2.08</td>
<td>6.18±0.15</td>
</tr>
<tr>
<td>50%</td>
<td>248.34±22.33</td>
<td>24.82±1.36</td>
<td>6.03±0.14</td>
</tr>
<tr>
<td>60%</td>
<td>480.13±23.60</td>
<td>43.41±0.89</td>
<td>4.29±0.03</td>
</tr>
<tr>
<td>70%</td>
<td>367.55±28.81</td>
<td>39.13±1.01</td>
<td>5.87±0.17</td>
</tr>
</tbody>
</table>

Values superscribed by different letters in the same column are significantly different (P<0.05).

Each value is expressed as mean ± SD (n=3).

Incubation time = 12 days.
### Table 7  
Effect of different inoculum volume on biomass, polysaccharide and final pH by *Phellinus linteus* on solid culture containing oats.

<table>
<thead>
<tr>
<th>Inoculum volume</th>
<th>Biomass (mg/g)</th>
<th>Polysaccharides (mg/g)</th>
<th>Final pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ml</td>
<td>458.05±23.60(^b)</td>
<td>35.14±2.19(^b)</td>
<td>4.96±0.41(^a)</td>
</tr>
<tr>
<td>3ml</td>
<td>530.17±16.72(^a)</td>
<td>45.20±1.41(^a)</td>
<td>4.56±0.02(^a)</td>
</tr>
<tr>
<td>5ml</td>
<td>533.11±12.93(^a)</td>
<td>45.34±0.40(^a)</td>
<td>4.57±0.06(^a)</td>
</tr>
</tbody>
</table>

Values superscribed by different letters in the same column are significantly different (P<0.05).

Each value is expressed as mean ± SD (n=3).

Incubation time = 12 days.
(四) 最適培養起始 pH 值探討

微生物生長與 pH 值有很大的關係，不同菌體有其生長最適的 pH 值，一般約在 6.5~7.5 可生長良好，在 pH 4 以下則不易生長。在固態發酵的過程中，由於固態基質不均勻的特性，因此對 pH 值的控制困難。Choi 等人 (2000) 與 Kim 等人 (2000) 的研究指出桑黃菌的最適培養 pH 值範圍為 pH 5~7。故本試驗以 HCl 及 NaOH 將培養基起始 pH 值調整至 4.0、5.0、6.0、7.0、8.0 及未調整 pH 值之對照組 (pH 5.6)，探討不同培養起始 pH 值對於桑黃菌生長及多醣體產生之影響。

結果 (表八) 顯示，起始 pH 值 6.0 之實驗組有最高的生物質 (536.06mg/g) 產量且顯著 (P<0.05) 高於其它實驗組及對照組；pH 值 5.0、6.0 及對照組有較高的多醣體產量，其中以 pH 值 6.0 的多潀體 (49.42mg/g) 產量最高，但彼此之間並無顯著差異，此結果與吳 (2009) 以搖瓶試驗探討桑黃菌 (P. linteus) 最適起始 pH 值為 5.8 相似。羅 (2008) 及蔡 (2008) 則指出桑黃菌 (P. ignarius) 胞外多醣體產生之起始 pH 值分別為 pH 5.4 與 pH 5。結果不同的原因可能為菌株不同所致。

最終 pH 值除了 pH 8.0 之實驗組為 pH 5.47 顯著高於其它組別之外，其它組別最終 pH 值皆維持在 4.8-5.1 之間。可能原因為 pH8.0 之實驗組菌絲體生長較差，代謝較少的有機酸類，加上起始 pH 值較高而導致最終 pH 值較高。根據以上結果，於桑黃固態發酵時以 pH 值 6.0 作為培養桑黃菌之起始 pH 值。
<table>
<thead>
<tr>
<th>Initial pH</th>
<th>Biomass (mg/g)</th>
<th>Polysaccharides (mg/g)</th>
<th>Final pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>441.87±21.21</td>
<td>36.67±1.97</td>
<td>5.04±0.02</td>
</tr>
<tr>
<td>5.0</td>
<td>507.39±17.52</td>
<td>44.77±2.59</td>
<td>4.86±0.07</td>
</tr>
<tr>
<td>6.0</td>
<td>536.06±12.87</td>
<td>49.42±1.90</td>
<td>4.85±0.06</td>
</tr>
<tr>
<td>7.0</td>
<td>477.92±12.16</td>
<td>43.92±4.61</td>
<td>5.07±0.19</td>
</tr>
<tr>
<td>8.0</td>
<td>455.11±14.70</td>
<td>40.88±1.71</td>
<td>5.47±0.16</td>
</tr>
<tr>
<td>Control*</td>
<td>499.63±15.51</td>
<td>46.12±1.80</td>
<td>4.91±0.34</td>
</tr>
</tbody>
</table>

Values superscribed by different letters in the same column are significantly different (P<0.05).
Each value is expressed as mean ± SD (n=3).
Incubation time = 12 days.
*Medium with an initial pH of 5.60.
（五）最適培養碳源種類探討

碳源(carbon source)為重要的微生物生長因子，是供應菌體生長及多醣合成所需的能量，不同碳源對微生物生長與代謝生成物有不同的影響。碳源的濃度不可太高，高濃度的碳源會改變培養基內的滲透壓，使細胞外溶液溶質濃度高於細胞內(高滲透壓溶液)，促使細胞內水分滲透至細胞外而萎縮，抑制菌絲體生長，造成成本的浪費。本試驗添加三種單糖(glucose、fructose、mannose)和三種雙糖(lactose、maltose、sucrose)等六種糖類(添加量為1%，w/w)及不添加任何碳源之對照組，探討添加不同碳源對於桑黃菌生長及多醣體產生之影響。

結果(表九)顯示，以添加fructose組有最高的生物質(522.07 mg/g)及多醣體(49.08 mg/g)產量且皆顯著(P<0.05)高於其它實驗組及對照組，最終pH值4.81亦顯著(P<0.05)低於其它組別。三種單糖實驗組之菌絲體及多醣體之產量皆高於三種雙糖實驗組及對照組，推測可能原因為雙糖需要經水解成單糖後才能利用，因此桑黃菌在發酵初期會優先利用結構簡單容易吸收之單糖作生長與合成所需。由實驗結果亦可得知，有添加碳源之組別菌絲體產量均高於對照組，因此添加適量的碳源有助於桑黃菌絲體的生長。

表九 碳源對桑黃菌（*Phellinus* *linteus*) 於燕麥於固態培養期間
（培養 12 天）生物質、多醣體及最終 pH 之影響
Table 9 Effect of carbon sources on biomass, polysaccharide and final pH
by *Phellinus linteus* on solid culture containing oats.

<table>
<thead>
<tr>
<th>Carbon sources (1.0%, w/w)</th>
<th>Biomass (mg/g)</th>
<th>Polysaccharides(mg/g)</th>
<th>Final pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>472.04±11.68(^{bc})</td>
<td>37.05±0.74(^{bc})</td>
<td>5.56±0.08(^{a})</td>
</tr>
<tr>
<td>Fructose</td>
<td>522.07±12.55(^{a})</td>
<td>49.08±0.60(^{a})</td>
<td>4.81±0.01(^{d})</td>
</tr>
<tr>
<td>Mannose</td>
<td>480.13±10.43(^{b})</td>
<td>39.09±0.67(^{b})</td>
<td>5.36±0.11(^{b})</td>
</tr>
<tr>
<td>Lactose</td>
<td>461.74±14.70(^{bcd})</td>
<td>36.25±0.54(^{cd})</td>
<td>5.05±0.11(^{c})</td>
</tr>
<tr>
<td>Maltose</td>
<td>451.43±7.75(^{dc})</td>
<td>32.50±1.00(^{e})</td>
<td>5.53±0.01(^{a})</td>
</tr>
<tr>
<td>Sucrose</td>
<td>453.64±13.31(^{dc})</td>
<td>34.16±0.67(^{de})</td>
<td>5.24±0.05(^{b})</td>
</tr>
<tr>
<td>Control *</td>
<td>441.87±18.77(^{d})</td>
<td>33.36±1.34(^{e})</td>
<td>5.04±0.10(^{c})</td>
</tr>
</tbody>
</table>

Values superscribed by different letters in the same column are significantly different (P<0.05).
Each value is expressed as mean ± SD (n=3).
Incubation time = 12 days.
* Medium without any added carbon sources.
(六) 最適培養氮源種類探討

氮源(nitrogen source)是微生物構成胺基酸、蛋白質及核酸的主要元素，對菌絲體與代謝物生成有非常大的影響。本試驗嘗試添加三種有機氮源（peptone, yeast extract, urea）與三種無機氮源（NH₄NO₃, NH₄H₂PO₄, (NH₄)₂SO₄）等六種氮源（添加量為 1%, w/w）及不添加氮源之對照組，探討添加不同氮源對於桑黃菌生長及多醣體產生之影響。

結果(表十)顯示，添加 yeast extract 之實驗組可得到最高的生物質 (494.11 mg/g) 但與 peptone, NH₄H₂PO₄, (NH₄)₂SO₄ 之實驗組及對照組間無顯著的差異；添加 yeast extract 之實驗組多醣體 (49.19 mg/g) 產量最高，但與 NH₄H₂PO₄, (NH₄)₂SO₄ 之實驗組間無顯著差異。添加 urea 之實驗組其生物質及多醣體含量均顯著低於其它組別，可能原因為基質中起始 pH 值過高 (pH 8.65) 嚴重導致培養環境呈鹼性而不利桑黃菌生長及代謝。


(七) 最適培養無機鹽類種類探討

無機鹽類含微量金屬元素，適當添加可有助於微生物生長與代謝。其主要作用為構成細胞的組成成分、酵素的組成成分、維持酵素作用、調節細胞滲透壓等。本試驗添加 NaCl, KCl, CaCl₂, FeSO₄, CuSO₄, ZnSO₄ 及 MgSO₄ 等七種無機鹽類（添加量為 0.1%, w/w）及未添加無機鹽類之對照組探討其對桑黃菌菌絲體及多醣體生成之影響。
### Table 10  Effect of nitrogen sources on biomass, polysaccharide and final pH by *Phellinus linteus* on solid culture containing oats.

<table>
<thead>
<tr>
<th>Nitrogen sources (1.0%, w/w)</th>
<th>Biomass (mg/g)</th>
<th>Polysaccharides(mg/g)</th>
<th>Final pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peptone</td>
<td>472.04±9.37&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>39.18±5.53&lt;sup&gt;b&lt;/sup&gt;</td>
<td>4.53±0.10&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Yeast extract</td>
<td>494.11±3.12&lt;sup&gt;a&lt;/sup&gt;</td>
<td>49.19±1.28&lt;sup&gt;a&lt;/sup&gt;</td>
<td>4.10±0.56&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td>Urea</td>
<td>318.98±19.29&lt;sup&gt;c&lt;/sup&gt;</td>
<td>27.15±0.80&lt;sup&gt;c&lt;/sup&gt;</td>
<td>6.37±0.09&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Inorganic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td>455.11±21.78&lt;sup&gt;b&lt;/sup&gt;</td>
<td>39.70±2.08&lt;sup&gt;b&lt;/sup&gt;</td>
<td>4.00±0.01&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td>NH₄H₂PO₄</td>
<td>472.04±18.73&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>43.83±2.56&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>3.58±0.05&lt;sup&gt;d&lt;/sup&gt;</td>
</tr>
<tr>
<td>NH₄NO₃</td>
<td>474.25±12.29&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>45.86±1.27&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>3.63±0.07&lt;sup&gt;d&lt;/sup&gt;</td>
</tr>
<tr>
<td>Control *</td>
<td>470.93±17.17&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>34.59±4.89&lt;sup&gt;b&lt;/sup&gt;</td>
<td>4.62±0.07&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

Values superscribed by different letters in the same column are significantly different (P<0.05).
Each value is expressed as mean ± SD (n=3).
Incubation time = 12 days.
* Medium without any added nitrogen sources.
結果(表十一)顯示，實驗組中 NaCl 組生物質 (563.65 mg/g) 產量最高，且顯著 (P < 0.05) 高於對照組，但與 KCl、CaCl₂ 組之間無顯著差異；而多醣體產量亦以 NaCl 組 (50.98 mg/g) 最高且顯著 (P < 0.05) 高於其它實驗組及對照組，表示添加無機鹽類 NaCl 可幫助桑黃菌生長與代謝物生成反應，造成此結果可能原因是為鹽類添加會造成培養環境中滲透壓改變，並且因 NaCl 為所有實驗組中分子量最小的無機鹽類，因此，在培養環境中添加相同量的無機鹽類以 NaCl 之濃度為最高，使培養環境中滲透壓也為最高，有助於菌體之胞內多醣製出所致。本試驗結果與林 (2006) 利用液態深層培養桑黃菌 (P. linteus) 中發現當氯化鈉添加濃度 0.1% 時，多醣產量可達最高之結果相同。綜合上述結果，在桑黃固態發酵時添加 NaCl 作為最適培養桑黃菌之無機鹽類。

(八) 最適培養生長因子種類探討

生長因子為微生物生長時所需的微量有機化合物，其中屬於維生素類的生長因子在醣類分解時擔任活化劑 (activator) 的角色，因此可有效幫助微生物快速生長 (黃，2001)。本試驗添加 corn steep liquor、thiamine (Vit B₁)、riboflavin (Vit B₂)、ascorbic acid (Vit C) 及 folic acid (Vit B₉) 等五種生長因子 (添加量為 0.3% w/w) 及未添加生長因子之對照組探討其對桑黃菌菌絲體及多醣體生成之影響。

結果(表十二)顯示，添加 folic acid 組有最高的生物質 (536.06 mg/g) 顯著 (P < 0.05) 高於其它實驗組 (ascorbic acid 除外) 及對照組；多醣體產量 (42.07 mg/g) 亦顯著 (P < 0.05) 高於其它實驗組及對照組。所有實驗組 (thiamine 組除外) 之生物質及多醣體產量均高於對照組，此結果與吳 (2009) 及潘 (2011) 研究中添加 thiamine 反而會抑制桑黃菌生長之結果
相同，推測原因为添加量過高，影響培養環境中酸鹼度而抑制菌體生長及代謝，亦有可能為桑黃菌對 thiamine 利用不大所致。

綜合上述結果，添加適當的生長因子有助於桑黃菌絲生長及代謝，在桑黃固態發酵時添加 folic acid 作為最適培養桑黃菌之生長因子。
### Table 11

<table>
<thead>
<tr>
<th>Mineral (0.1%, w/w)</th>
<th>Biomass (mg/g)</th>
<th>Polysaccharides (mg/g)</th>
<th>Final pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>563.65±17.17&lt;sup&gt;a&lt;/sup&gt;</td>
<td>50.98±3.42&lt;sup&gt;a&lt;/sup&gt;</td>
<td>4.41±0.02&lt;sup&gt;d&lt;/sup&gt;</td>
</tr>
<tr>
<td>KCl</td>
<td>539.37±10.93&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>44.49±1.74&lt;sup&gt;bc&lt;/sup&gt;</td>
<td>4.46±0.07&lt;sup&gt;bcd&lt;/sup&gt;</td>
</tr>
<tr>
<td>CaCl&lt;sub&gt;2&lt;/sub&gt;</td>
<td>529.43±9.37&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>45.15±0.94&lt;sup&gt;b&lt;/sup&gt;</td>
<td>4.59±0.06&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>FeSO&lt;sub&gt;4&lt;/sub&gt;</td>
<td>442.24±17.17&lt;sup&gt;c&lt;/sup&gt;</td>
<td>40.87±0.67&lt;sup&gt;c&lt;/sup&gt;</td>
<td>4.55±0.06&lt;sup&gt;ab&lt;/sup&gt;</td>
</tr>
<tr>
<td>CuSO&lt;sub&gt;4&lt;/sub&gt;</td>
<td>476.45±17.73&lt;sup&gt;c&lt;/sup&gt;</td>
<td>40.46±1.67&lt;sup&gt;c&lt;/sup&gt;</td>
<td>4.53±0.03&lt;sup&gt;abc&lt;/sup&gt;</td>
</tr>
<tr>
<td>ZnSO&lt;sub&gt;4&lt;/sub&gt;</td>
<td>517.29±10.93&lt;sup&gt;b&lt;/sup&gt;</td>
<td>43.78±0.87&lt;sup&gt;bc&lt;/sup&gt;</td>
<td>4.44±0.03&lt;sup&gt;cd&lt;/sup&gt;</td>
</tr>
<tr>
<td>MgSO&lt;sub&gt;4&lt;/sub&gt;</td>
<td>478.66±12.49&lt;sup&gt;c&lt;/sup&gt;</td>
<td>31.98±1.21&lt;sup&gt;d&lt;/sup&gt;</td>
<td>4.43±0.02&lt;sup&gt;cd&lt;/sup&gt;</td>
</tr>
<tr>
<td>Control*</td>
<td>458.49±18.73&lt;sup&gt;c&lt;/sup&gt;</td>
<td>28.24±1.27&lt;sup&gt;d&lt;/sup&gt;</td>
<td>4.48±0.09&lt;sup&gt;bcd&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

Values superscribed by different letters in the same column are significantly different (P<0.05).
Each value is expressed as mean ± SD (n=3).
Incubation time = 12 days.
*Medium without any added minerals.
<table>
<thead>
<tr>
<th>Growth factor (0.3%, w/w)</th>
<th>Biomass (mg/g)</th>
<th>Polysaccharides (mg/g)</th>
<th>Final pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn steep liquor</td>
<td>484.18±4.68&lt;sup&gt;bc&lt;/sup&gt;</td>
<td>32.55±0.66&lt;sup&gt;c&lt;/sup&gt;</td>
<td>4.50±0.06&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Thiamine</td>
<td>419.06±9.37&lt;sup&gt;d&lt;/sup&gt;</td>
<td>24.55±1.81&lt;sup&gt;d&lt;/sup&gt;</td>
<td>5.86±0.10&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Riboflavin</td>
<td>494.11±18.73&lt;sup&gt;b&lt;/sup&gt;</td>
<td>36.58±1.14&lt;sup&gt;b&lt;/sup&gt;</td>
<td>4.50±0.12&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Ascorbic Acid</td>
<td>512.88±7.81&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>36.48±0.73&lt;sup&gt;b&lt;/sup&gt;</td>
<td>4.45±0.13&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Folic Acid</td>
<td>536.06±15.61&lt;sup&gt;a&lt;/sup&gt;</td>
<td>43.02±0.46&lt;sup&gt;a&lt;/sup&gt;</td>
<td>4.47±0.01&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Control*</td>
<td>459.89±10.93&lt;sup&gt;c&lt;/sup&gt;</td>
<td>30.47±0.67&lt;sup&gt;c&lt;/sup&gt;</td>
<td>4.57±0.09&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

Values superscribed by different letters in the same column are significantly different (P<0.05).
Each value is expressed as mean ± SD (n=3).
Incubation time = 12 days.
*Medium without any added growth factors.
（九）最適培養條件對桑黃菌絲體及多醣體生成之影響

本試驗採用前述實驗(一)-(八)最適培養桑黃菌之條件,探討其在培養過程中(20天)生物量及多醣體產量的變化。所用的固態培養基即為修飾固態培養基(培養溫度30℃,水添加量60%,接菌量3ml,起始pH值6.0,含1%fructose,1%yeastextract,0.3%folicacid及0.1%NaCl)。

圖十四為桑黃菌在燕麥固態培養基中培養20天生物量、多醣體產量及pH值的變化情形。結果顯示，桑黃菌生物質及多醣體產量從培養第6天開始快速的增加，且都在發酵第12天時達到最高，此後兩者皆隨著培養時間增加而逐漸的下降，可能原因為培養基內的養分不足或培養空間不夠導致菌體死亡、自體分解或轉而利用產生的多醣所致。

培養期間pH值隨菌絲體生物質的增加而下降，尤其在生物質快速上升時，pH值隨之快速下降(6-10天)，原因可能為菌體快速利用碳源產生有機酸所致；在菌絲體生物質開始下降後，pH值有稍微升高的趨勢(10-20天)，可能原因為菌體老化自體分解產生一些鹼性物質或有機氮源被菌體利用產生類似氨類之物質導致環境中pH值上升。

本試驗結果之生物質(705.30mg/g)及多醣體產量(61.73mg/g)均高於前述實驗之最高值，且分別為基礎培養基產量(生物質432.30mg/g及多醪體45.48mg/g，表五)之1.63及1.35倍。此結果顯示以修飾培養基培養桑黃菌12天可提高菌絲體生物質及多醪體產量。爾後試驗(多醪體分子量、β-(1→3)-D-glucan相對含量、抑菌力、抗氧化力和癌細胞存活率)之固態發酵樣品均採用修飾培養基發酵至第12天所得之桑黃燕麥樣品。
圖十四  桑黃菌（Phellinus linteus）於燕麥於固態培養發酵期間（30 °C /20 天）生物質、多醣體及最終 pH 之變化。

Fig. 14  Changes of biomass, polysaccharide and final pH during growth of Phellinus linteus（30 °C / 20 days）on solid culture containing oats.
三、多醣體分子量之測定

本試驗取經修飾培養基固態發酵之桑黃燕麥、固態燕麥基質及參考吳(2009)之報告，利用氣舉式發酵槽（air lift fermentor）液態培養桑黃菌至最高胞外多醣體生成時間(第八天)之發酵液樣品。測定此三種樣品中多醣體分子量及分子量分佈情形。分子量的分析以高效能液相層析儀及膠體滲透層析管柱進行測定。表十三為不同分子量多醣標準品（α-D-葡聚糖，pullulan）之滯留時間。附圖四為多醣體（分子量 21100、47100、107000、200000、344000 及 708000 Da，retention time 分別為 11.94、11.52、10.89、10.34、9.70 及 9.03 分鐘）之標準曲線。

結果（表十四）顯示燕麥基質、桑黃燕麥及發酵液多醣體之滯留時間分別於，11.48min、12.87min 及 13.06min 時呈現主要波峰，比對多醣分子量標準曲線（附圖四）後得知彼等分子量分別約為 8.96×10^3 Da、4.54×10^4 Da 及 7.28×10^3 Da。

由多醣分子量圖譜（圖十五）顯示，燕麥基質多醣分子量（圖十五-a）主要分布在 8.96×10^3 Da (retention time 12.87min) 且有少量的大分子多醣(retention time 5.98 min 及 8.49 min)。經過桑黃發酵後的桑黃燕麥（圖十五-b），原本存在燕麥分子量圖譜之波峰(retention time 5.98 和 8.49 min) 消失，產生了 3.67×10^5 Da (retention time 9.69 min)、4.54×10^4 Da (retention time 11.48 min) 及 7.89×10^3 Da (retention time 12.98 min) 等分子量之多醣體，彼等產生原因可能為菌體在生長期間水解燕麥基質中大分子多醣，再經桑黃菌發酵後產生小分子多醣所致。由於多醣體之合成機制複雜，無法就此結果明確說明菌體是如何利用燕麥多醣代謝合成桑黃燕麥多醣體，往後應可利用氣相色層分析儀分析燕麥及桑黃燕麥之單醣組成，並且再以氣相層析質譜儀及傅立葉轉換紅外線光譜儀分析糖苷鍵的鍵結位置及構型（康，2003）。藉此更清楚了解燕麥多醣體與桑黃燕麥多
醣體之間的關係，有助於更進一步了解以燕麥基質進行固態培養桑黃菌之多醣體合成方式。

比較桑黃燕麥多醣體與發酵液多醣體分子量圖譜（圖十五-b,c），前者較後者多了7.89×10³Da（retention time 12.98min）、4.54×10⁴Da（retention time 11.48min）及3.67×10⁵Da（retention time 9.69min）等分子量較大的多醣，且桑黃燕麥多醣之主要分子量4.54×10⁴Da亦大於發酵液多醪之7.28×10³Da；真菌多醪體分子量不同，其具有的生理活性功能也不同，一般可分為三類：(1)分子量在3,000~5,000 Da之間具有降血糖功能，如靈芝生產之Ganoderan(2)分子量在10,000~100,000之間具有消炎作用(3)分子量在30,000以上則具有抗腫瘤活性，如香菇多糖、雲芝多醪等（黃，1998）。由本實驗結果可推測，桑黃菌固態發酵所產生的桑黃多醪體分子量較液態發酵所得到的多醪分子量大，可能具有抗腫瘤及抗發炎等生理活性。
表十三  胶体渗透层析法不同分子量多醣標準品（α-D-葡聚糖）之滯留時間
Table 13  Retention times of pullulan standards with different molecular weights by gel permeation chromatography.

<table>
<thead>
<tr>
<th>Molecular weight (Da)</th>
<th>Retention time (min)</th>
<th>Log M.W.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>21100</td>
<td>11.94</td>
<td>4.32</td>
</tr>
<tr>
<td>47100</td>
<td>11.52</td>
<td>4.67</td>
</tr>
<tr>
<td>107000</td>
<td>10.89</td>
<td>5.03</td>
</tr>
<tr>
<td>200000</td>
<td>10.34</td>
<td>5.30</td>
</tr>
<tr>
<td>344000</td>
<td>9.70</td>
<td>5.54</td>
</tr>
<tr>
<td>708000</td>
<td>9.03</td>
<td>5.85</td>
</tr>
</tbody>
</table>

* Log molecular weight
### Table 14
Estimation of molecular weights of polysaccharides from oat substrate, *Phellinus*-fermented oat and submerged culture of air lift fermentor, by gel permeation chromatography.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Retention time (min)</th>
<th>Molecular weight (Da)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oat substrate</td>
<td>12.87</td>
<td>8.96×10³</td>
</tr>
<tr>
<td><em>Phellinus</em>-fermented oat</td>
<td>11.48</td>
<td>4.54×10⁴</td>
</tr>
<tr>
<td>submerged culture</td>
<td>13.06</td>
<td>7.28×10³</td>
</tr>
</tbody>
</table>
Fig. 15 Molecular weight chromatograms of polysaccharides from oat substrate, *Phellinus*-fermented oat and air lift fermentor by gel permeation chromatography. (a) oat substrate, (b) *Phellinus*-fermented oat, (c) air lift fermentor.
四、β-(1→3)-D-glucan 相对含量测定

多醣體中以 β-(1→3)-D-glucan 結構具有較佳之功效性，其可用於宿主防禦物質之增強劑 (host defense potentiator or HDP)、抗腫瘤 (antitumor)、抗發炎 (anti-infective) 及免疫誘苗 (immunostimulator) 等 (Ko and Lin, 2004)。Aniline blue 與菇類多醣體中之 β-(1→3) 鍵結在特定的環境下 (pH=11.50 內含 0.5M NaCl 之 0.05M Na₂HPO₄·NaOH 溶液) 會形成某種形式之錯合物，並在 UV 光照射下（激發波長為 395nm，放射波長為 495nm）產生黃色螢光。而標準品海藻多醣 (Laminarin LE) 其結構主要 poly β-(1→3)-Glu 為主鍵結結構，內部有少數的 β-(1→6)-Glu 鍵結分支，經研究證實此多醣濃度和螢光強度具有良好線性關係，可應用於 β-(1→3)-D-glucan 含量的快速定量 (呂, 2002)。

表十五顯示，相較於燕麥基質多醣 (5.19 μg/ml LE) 與發酵液多醣 (17.05 μg/ml LE)，桑黃燕麥多醣中具顯著 (P<0.05) 最高的 β-(1→3)-D-glucan 相對含量 (29.09 μg/ml LE)。呂 (2009) 以攪拌式、氣泡式及氣舉式發酵槽培養桑黃菌 (P. linteus) 所得胞外多醣體中 β-(1→3)-D-glucan 相對含量分別為 10.97 μg/ml LE、16.25 μg/ml LE 及 15.83 μg/ml LE，其中氣舉式發酵槽所得胞外多醣中 β-(1→3)-D-glucan 相對含量 (15.83 μg/ml LE) 與本實驗結果 (17.05 μg/ml LE) 相近 (表十五)。

由上述結果可知不同發酵環境及方式會影響桑黃菌產生 β-(1→3)-D-glucan 的含量，而經由固態基質培養之桑黃燕麥多醣體較液態發酵所得者具有較高之生理活性。
表十五
燕麥基質、桑黃燕麥及氣舉式發酵槽發酵液中多醣之 β-(1→3)-D-glucan 相對含量

<table>
<thead>
<tr>
<th>Cultures</th>
<th>Laminarin equivalent (LE) (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oat substrate</td>
<td>5.19±0.01&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td><em>Phellinus</em>-fermented oat</td>
<td>29.09±0.49&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>submerged culture</td>
<td>17.05±0.42&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

Values superscribed by different letters in the same column are significantly different (P<0.05).
Each value is expressed as mean ± SD (n=3).
五、抑菌能力測定

許多真菌之代謝物具有抑制細菌生長或是可以破壞細菌菌體的作用，例如 Chaetomium cochliodes 產生 cochlinol、Gliocladium virens 產生 gliovirin、Myrothecium verrucaria 產生 verrucarin 及 Penicillium vermiculatum 產生 vermistan 等（梅谷和加藤，1990）。

本實驗取燕麥基質、桑黃燕麥及氣舉式發酵槽發酵液三種樣品，將彼等製備成乾燥樣品粉末後，再經熱水及乙醇萃取(材料與方法四-(六)-4)後定量至濃度（2、4、6、8 及 10 mg/ml）待測液，取含 10μl 待測液圓形濾紙片，對六株測試細菌（Bacillus cereus、Escherichia coli、Listeria monocytogene、Pseudomonas aeruginosa、Staphylococcus aureus 及 Salmonella typhimurium）進行抑菌能力測定，六株測試細菌對不同濃度 ampicillin 產生抑菌環之標準曲線如附圖六~附圖十一所示。結果顯示固態桑黃燕麥、液態發酵液及燕麥基質樣品粉末之熱水及乙醇萃取物皆無抑菌效果（資料未列）。

Hur 等人（2004）使用不同溶劑萃取桑黃子實體所得到之萃取液對抗藥性金黃色葡萄球菌（methicillin-resistant Staphylococcus aureus）進行測試，結果發現其最低抑菌濃度（minimal inhibitory concentration；MIC）以正丁醇萃取物的效果最好（MIC：63-125μg/ml）。吳（2009）以未經萃取之桑黃菌（P. linteus）發酵液及潘（2011）以熱水及乙醇萃取之固態桑黃（P. igniarius）燕麥待測液對本實驗相同之六株細菌皆無抑菌效果，以上報告與本實驗結果相似，推測可能原因為桑黃菌在營養生長期（菌絲體階段）尚未產生抑菌物質而需至繁殖生長期（子實體階段）才有抑菌物質的產生，或是未使用其他有機溶劑（甲醇、正丁醇等）萃取出有效之抑菌物質或是待測液中抑菌物質濃度過低所致。
六、抗氧化能力測定

人體會經由飲食、外在接觸或是體內所進行生理反應的過程中產生活性氧族群 (reactive oxygen species) 和自由基 (free radicals)，此類物質會造成脂質過氧化作用 (lipid peroxidation) 導致細胞甚至器官的病變或是死亡。人體內有一套自我防護的系統可以清除有害的物質，如：超氧歧化酶 (superoxide dismutase) 或是觸酶 (catalase) 等，而抗氧化劑則是屬於非酵素性的抗氧化防禦系統，依其作用機制可分為自由基連鎖反應終止劑 (free radical terminator)、還原劑或氧清除劑 (reducing agents or oxygen scavenger) 及金屬螯合劑 (metal chelators) 等 (謝，2000)。目前已證實清除自由基對於細胞保護、疾病預防與衰老延緩等，具有顯著的作用，而使得控制體內自由基的成份或是有效清除已產生之自由基，成為目前醫藥界積極努力的方向；任何具有上述功能的成份或是物質，亦受到學界及業界的關注 (梁，2009)。

本實驗測定燕麥基質、桑黃燕麥及氣舉式發酵槽發酵液乾燥粉末之熱水及乙醇萃取物共六種樣品之抗氧化力。分析抗氧化性質之項目包括 DPPH 自由基清除能力、螯合亞鐵離子能力、還原力及總抗氧化能力，將所得抗氧化性質評估結果以線性迴歸之內插法加以換算後，以 IC_{50} 值 (清除或抑制 50% 自由基所需之最低濃度) 表示；再經熱水及乙醇萃取率的換算可得知多少量的樣品粉末可表現出 IC_{50} 值的效果。
(一) DPPH 自由基清除能力

在抗氧化作用的研究上，通常使用 DPPH(α,α-diphenyl-β-picrylhydrazyl)来评估抗氧化物的供氢能力。因为 DPPH 自由基可接受抗氧化剂所提供的氢原子而被清除，并形成一稳定之分子，因此常被用以检测抗氧化物的抗氧化活性（Shimada et al., 1992）。

结果(图十六)显示，六种样品 DPPH 自由基清除能力皆随浓度之增加而升高，其中桑黄燕麦及桑黄发酵液热水萃取物在浓度 2 mg/ml 时，其 DPPH 自由基清除能力即分别可达 74.10% 及 68.77%，之后随著浓度增加而逐渐趋向平缓，表示其 DPPH 自由基清除能力已逐渐达最大值。而在最大浓度 10 mg/ml 时，六种样品的 DPPH 自由基清除能力大小依序为桑黄燕麦（热水萃取）99.22%、发酵液（热水萃取）93.55%、燕麦基质（热水萃取）89.74%、桑黄燕麦（乙醇萃取）87.39%、燕麦基质（乙醇萃取）81.81%及发酵液（乙醇萃取）52.21%，其中清除能力最高之桑黄燕麦热水萃取组，其 DPPH 自由基清除能力相当於浓度 21.17 μg/ml 之 BHA、20.53 μg/ml 之 ascorbic acid 及 17.55 μg/ml 之 α-tocopherol（附图十八~二十）。

六种样品 DPPH 自由基清除能力之 IC50 值（清除 50% DPPH 自由基所需之最低浓度）结果（表十六）显示，桑黄燕麦热水萃取物之 IC50 值 1.23mg/ml 显著（P<0.05）低於其它实验组，正对照组中以 Ascorbic acid 具最低之 IC50 值 9.91×10^{-3} mg/ml；以上 IC50 值由线性回归内插法测定之（附图十二~附图二十）。

热水及乙醇萃取率的结果(表十七)显示，热水萃取率高低依序为桑黄燕麦（60.43%）、发酵液（54.32%）及燕麦基质（17.78%），乙醇萃取率高低依序为桑黄燕麦（35.60%）、发酵液（28.04%）及燕麦基质（10.72%）。上述结果指出无论以热水或乙醇萃取，皆以桑黄燕麦组可得较高之萃取率，
而以熱水萃取方式較乙醇萃取方式可提高萃取率，原因為熱水萃取可能破
壞細胞壁結構讓可溶性物質溶出，而乙醇可能使細胞壁的醣蛋白變化，反
而使可溶性物質不易溶出（梁，2009）。

由萃取率可換算成樣品達 IC₅₀ 值所需之粉末重量 (表十八)，熱水萃取組
中由桑黃燕麥組具較高之萃取率（60.43%），因此，僅需 2.05 mg
（1.23/0.6043）粉末即可達 IC₅₀ 值所需的濃度，顯著（P＜0.05）低於發酵
液所需的 2.98 mg（1.62/0.5432）及燕麥基質的 29.78 mg（5.29/0.1778）粉
末。乙醇萃取組中，亦由桑黃燕麥組具較高之萃取率（35.60%），因此
僅需 8.29 mg (2.95/0.3560) 粉末即可達 IC₅₀ 值所需的濃度，顯著（P＜0.05）
低於發酵液所需的 35.41 mg（9.93/0.2804）及燕麥基質的 54.01 mg
（5.79/0.1072）。

綜合上述結果，在六種樣品中以桑黃燕麥熱水萃取物在濃度 10 mg/ml
時有最佳之 DPPH 自由基清除能力 99.22% 及最低之 IC₅₀ 值 1.23 mg/ml，
若考慮萃取率其僅需 2.05 mg 之粉末即可達 IC₅₀ 值所需的濃度。Shimada
等人（1992）指出 BHA 及 BHT 其抗氧化作用是藉由供應氫原子之方式而
達成。而 α-tocopherol 亦是將氫原子轉移給過氧化自由基以達成抑制脂質
過氧化作用（Yamaguchi et al., 1995）。因此，桑黃燕麥具有不錯的 DPPH 自
由基清除能力，可提供氫原子而阻止油脂自氧化連鎖反應。Matsuda 等
（2001）指出具 DPPH 自由基高清除率之化合物，酚基是不可缺少的官能
基。因此推測利用固態發酵培養桑黃菌較液態發酵能誘導其代謝產生出
更多的酚類抗氧化物質，提高 DPPH 自由基的清除能力。
Fig. 16  DPPH scavenging effect of hot-water extracts and ethanolic extracts from oat substrate, *Phellinus*-fermented oat and submerged culture of *P. linteus* using air lift fermentor.
Table 16 The IC$_{50}$ of DPPH scavenging effect of hot-water extracts and ethanolic extracts from oat substrate, *Phellinus*-fermented oat and submerged culture of *P. linteus* using air lift fermentor.

<table>
<thead>
<tr>
<th>Samples</th>
<th>IC$_{50}$ (mg/ml)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oat substrate (hot-water extract)</td>
<td>5.29±0.03$^c$</td>
</tr>
<tr>
<td>Oat substrate (ethanol-extract)</td>
<td>5.79±0.15$^b$</td>
</tr>
<tr>
<td><em>Phellinus</em>-fermented oat (hot-water extract)</td>
<td>1.23±0.07$^f$</td>
</tr>
<tr>
<td><em>Phellinus</em>-fermented oat (ethanol-extract)</td>
<td>2.95±0.04$^d$</td>
</tr>
<tr>
<td>Submerged culture (hot-water extract)</td>
<td>1.62±0.01$^c$</td>
</tr>
<tr>
<td>Submerged culture (ethanol-extract)</td>
<td>9.93±0.07$^a$</td>
</tr>
<tr>
<td>BHA (positive control)</td>
<td>10.24×10$^{-3}$</td>
</tr>
<tr>
<td>Ascorbic acid (positive control)</td>
<td>9.91×10$^{-3}$</td>
</tr>
<tr>
<td>$\alpha$-tocopherol (positive control)</td>
<td>17.55×10$^{-3}$</td>
</tr>
</tbody>
</table>

*Values superscribed by different letters in the same column are significantly different (P<0.05). Each value is expressed as mean ± SD (n=3).*

*The minimal concentration required to inhibit 50% activity of DPPH.*
### Table 17  Extraction yield of hot-water extracts and ethanolic extracts from oat substrate, *Phellinus*-fermented oat and submerged culture of *P. linteus* using air lift fermentor.

<table>
<thead>
<tr>
<th></th>
<th>Oat substrate</th>
<th><em>Phellinus</em>-fermented oat</th>
<th>Submerged culture</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Hot water</strong></td>
<td>17.78±0.15(^c)</td>
<td>60.43±0.20(^a)</td>
<td>54.32±1.01(^b)</td>
</tr>
<tr>
<td><strong>Ethanol</strong></td>
<td>10.72±0.47(^c)</td>
<td>35.6±0.53(^a)</td>
<td>28.04±0.81(^b)</td>
</tr>
</tbody>
</table>

Values superscribed by different letters in the same row are significantly different (P<0.05). Each value is expressed as mean ± SD (n=3).
The IC$_{50}$ value of antioxidant properties of powders from oat substrate, *Phellinus*-fermented oat and submerged culture of *P. linteus* using air lift fermentor.

<table>
<thead>
<tr>
<th></th>
<th>DPPH scavenging ability</th>
<th>Total antioxidant capacity</th>
<th>Chelating ability on ferrous ion</th>
<th>Reducing power</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Hot water-extract</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oat substrate</td>
<td>29.75±0.15$^A$</td>
<td>29.73±0.15$^A$</td>
<td>37.29±0.67$^A$</td>
<td>35.94±0.19$^A$</td>
</tr>
<tr>
<td><em>Phellinus</em>-fermented oat</td>
<td>2.05±0.12$^C$</td>
<td>1.47±0.08$^C$</td>
<td>8.71±0.09$^C$</td>
<td>1.95±0.12$^C$</td>
</tr>
<tr>
<td>Submerged culture</td>
<td>2.98±0.02$^B$</td>
<td>2.79±0.11$^B$</td>
<td>10.92±0.10$^B$</td>
<td>8.64±0.05$^B$</td>
</tr>
<tr>
<td><strong>Ethanol-extract</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oat substrate</td>
<td>54.01±1.36$^a$</td>
<td>34.88±0.97$^a$</td>
<td>58.12±1.71$^a$</td>
<td>35.73±0.75$^a$</td>
</tr>
<tr>
<td><em>Phellinus</em>-fermented oat</td>
<td>8.29±0.10$^c$</td>
<td>3.06±0.09$^c$</td>
<td>28.27±0.21$^c$</td>
<td>8.96±0.13$^c$</td>
</tr>
<tr>
<td>Submerged culture</td>
<td>35.41±0.27$^b$</td>
<td>6.32±0.31$^b$</td>
<td>33.74±0.36$^b$</td>
<td>18.46±0.02$^b$</td>
</tr>
</tbody>
</table>

Values superscribed by different letters in the same column are significantly different (P<0.05). Each value is expressed as mean ± SD (n=3).
（二）螯合亞鐵離子能力測定

在脂質自氧化過程中，金屬離子的存在可以直接催化起始反應的發生，只要微量的金屬離子，便可有效的產生自由基，並加速脂質氧化的進行（Gordon, 1990）。在許多的金屬離子中，亞鐵離子是最具影響力的助氧化劑，因此若樣品對亞鐵離子具有螯合力，則其對抗氧化作用將有所幫助。

結果（圖十七）顯示，六種樣品螯合亞鐵離子能力皆隨濃度之增加而升高，但在濃度 0-4 ml/mg 六種樣品的螯合亞鐵離子能力皆未達 50%，當濃度提升到 6 ml/mg 時，僅桑黃燕麥及桑黃發酵液熱水萃取物其螯合亞鐵離子能力方分別達 50.09%及 49.33%。當樣品達最大濃度 10 mg/ml 時，六種樣品的螯合亞鐵離子能力大小依序為桑黃燕麥（熱水萃取）88.55%、發酵液（熱水萃取）80.36%、燕麥基質（熱水萃取）73.65%、燕麥基質（乙醇萃取）70.17%、發酵液（乙醇萃取）52.34%及桑黃燕麥（乙醇萃取）46.72%，其中以桑黃燕麥熱水萃取物螯合亞鐵離子能力最高，其螯合亞鐵離子能力相當於濃度 92.57 μg/ml 之 EDTA（附圖二十七）。六種樣品螯合亞鐵離子能力之 IC50 值（螯合 50%亞鐵離子所需之最低濃度）結果（表十九）顯示，桑黃燕麥熱水萃取物之 IC50 值 5.26 mg/ml 顯著（P<0.05）低於其它實驗組。正對照組 EDTA 之 IC50 值則為 50.03×10⁻³ mg/ml；以上 IC50 值由線性回歸內插法測定之（附圖二十一~附圖二十七）。

由萃取率換算成樣品達 IC50 值所需粉末重之結果（表十八）顯示，熱水萃取組中以桑黃燕麥僅需 8.71 mg (5.26/0.6043) 粉末即可達 IC50 值所需的濃度，顯著（P<0.05）低於發酵液所需的 10.92 mg (5.93/0.5432) 及燕麥基質的 37.29 mg (6.63/0.1778)粉末。乙醇萃取組中亦以桑黃燕麥需 28.27 mg (10.06/0.3560) 粉末即可達 IC50 值所需的濃度，顯著（P<0.05）低於發酵液所需的 33.74 mg (9.46/0.2804)及燕麥基質的 58.12 mg (6.23/0.1072)。
綜合上述結果，六種樣品中以桑黃燕麥熱水萃取物在濃度 10 mg/ml 時
有最佳之螯合亞鐵離子能力 88.55%及最低之 IC₅₀ 值 5.26 mg/ml，若考慮
萃取率其僅需 8.71 mg 之粉末即可達 IC₅₀ 值所需的濃度。本實驗結果亦顯
示，以乙醇萃取桑黃燕麥及發酵液組所得之螯合亞鐵離子能力分別為
46.72%及 52.34%，較熱水萃取組為低，此結果與梁（2009）以乙醇萃取桑
黃菌絲體及發酵液在濃度 20 mg/ml 時，其螯合亞鐵離子能力分別為 56.40%
和 29.28%及徐（2008）以乙醇萃取桑黃薏仁及桑黃米在濃度 20 mg/ml 時，
其螯合亞鐵離子能力分別為 29.98%及 38.49%類似，因此，推測經熱水萃
取可比乙醇萃取得到具有較多螯合亞鐵離子之結構。徐（2008）以固態發
酵桑黃菌所得桑黃薏仁之熱水萃取物在濃度 10 mg/ml 之亞鐵離子之螯合
能力達 84.26%，較本實驗結果為低，可能原因為菌種不同及所用穀物基質
不同所致。
Fig. 17 Ferrous ion chelating ability of hot-water extracts and ethanolic extracts from oat substrate, *Phellinus*-fermented oat and submerged culture of *P. linteus* using air lift fermentor.
Table 19  The IC\textsubscript{50} of ferrous ion chelating ability of hot-water extracts and ethanolic extracts from oat substrate, Phellinus-fermented oat and submerged culture of \textit{P. linteus} using air lift fermentor.

<table>
<thead>
<tr>
<th>Samples</th>
<th>IC\textsubscript{50} (mg/ml)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oat substrate ( hot-water extract )</td>
<td>6.63±0.11 \textsuperscript{c}</td>
</tr>
<tr>
<td>Oat substrate ( ethanol-extract )</td>
<td>6.23±0.18 \textsuperscript{d}</td>
</tr>
<tr>
<td>\textit{Phellinus}-fermented oat ( hot-water extract )</td>
<td>5.26±0.06 \textsuperscript{f}</td>
</tr>
<tr>
<td>\textit{Phellinus}-fermented oat ( ethanol-extract )</td>
<td>10.06±0.07 \textsuperscript{a}</td>
</tr>
<tr>
<td>Submerged culture ( hot-water extract )</td>
<td>5.93±0.05 \textsuperscript{e}</td>
</tr>
<tr>
<td>Submerged culture ( ethanol-extract )</td>
<td>9.46±0.10 \textsuperscript{b}</td>
</tr>
<tr>
<td>EDTA (positive control)</td>
<td>50.03×10\textsuperscript{-3}</td>
</tr>
</tbody>
</table>

Values superscribed by different letters in the same column are significantly different (P<0.05). Each value is expressed as mean ± SD (n=3).

* The minimal concentration required to chelate 50\% activity of ferrous ion.
（三）還原力測定

物質之還原力為將已氧化的物質還原，或將環境維持於傾向於還原狀態而不易進行氧化反應。具有還原力之物質可作為電子之提供者，與自由基的清除有很大的關係(蔡, 2002)。本實驗為分析樣品將赤血鹽 (potassium ferricyanide) 中之Fe^{3+}還原為Fe^{2+}之亞鐵氰錯離子的能力，此亞鐵氰錯離子再與Fe^{3+}作用形成產生普魯士藍 (Prussian blue)，於波長700nm具最大吸光值，由波長700nm吸光值變化來檢測還原力大小，吸光值越高表示樣品還原力愈強。

結果(圖十八)顯示，六種樣品還原力皆隨濃度之增加而升高，其中桑黃燕麥熱水萃取物的還原力在低濃度 2 mg/ml 時吸光值就快速上升達 0.81，高於相同濃度之其他實驗組別，之後上升趨勢就較為緩和。桑黃燕麥乙醇萃取物的還原力在濃度 6~8 mg/ml 時吸光值急速上升，由 0.85 上升到 1.19。當樣品達最大濃度 10 mg/ml 時，六種樣品的還原力大小依序為桑黃燕麥（熱水萃取）1.48、桑黃燕麥（乙醇萃取）1.39、燕麥基質（乙醇萃取）1.04、發酵液（熱水萃取）0.96、發酵液（乙醇萃取）0.91 及燕麥基質（熱水萃取）0.82，其中以桑黃燕麥熱水萃取物還原力最高，其還原力相當於濃度 38.89 μg/ml 之 ascorbic acid (附圖三十六)。六種樣品還原力之 IC_{50} 值（吸光值達到 0.5 所需之最低濃度）結果（表二十）顯示，桑黃燕麥熱水萃取物之 IC_{50} 值 1.18 mg/ml 顯著 (P < 0.05) 低於其它實驗組。正對照組中以 Ascorbic acid 之 IC_{50} 值則為 13.03×10^{-3} mg/ml 最低，BHA 及 α-tocopherol 之 IC_{50} 值分別為 29.15×10^{-3} mg/ml 及 62.83×10^{-3} mg/ml；以上 IC_{50} 值由線性回歸內插法測定之（附圖二十八~附圖三十六）。

由萃取率換算成樣品達 IC_{50} 值所需粉末重之結果(表十八)顯示，熱水萃取組中以桑黃燕麥僅需 1.95 mg （1.18/0.6043）粉末即可達 IC_{50} 值所需。
的濃度，顯著（P＜0.05）低於發酵液所需的 8.64 mg（4.69/0.5432）及燕麥基質的 59.4 mg（6.39/0.1778）粉末。乙醇萃取組中亦以桑黃燕麥需 8.96 mg（3.19/0.3560）粉末即可達 IC50 值所需的濃度，顯著（P＜0.05）低於發酵液所需的 18.46 mg（5.18/0.2804）及燕麥基質的 35.73 mg（3.83/0.1072）。整體而言，熱水萃取物比乙醇萃取物有較佳的還原力（燕麥基質組除外），Pitotti 等（1995）發現梅納反應產物之抗氧化性可能與其所含之還原酮具相關性，因此，推測熱水萃物可能是因含有較多的還原酮成分，而能與自由基反應呈穩定狀態，進而終止自由基連鎖反應。

吳（2009）以液態發酵桑黃菌（P. linteus）所得搖瓶培養、氣泡式、攪拌式及氣舉式發酵槽之發酵液，在濃度 10 mg/ml 時四組之還原力（OD700）分別為 0.817、0.718、0.753 及 0.844 及徐（2008）以固態發酵桑黃菌所得桑黃薏仁之熱水萃取物在濃度 10 mg/ml 時還原力為 0.86（OD700），兩者之研究結果都較低於本實驗結果桑黃燕麥（熱水萃取）之 1.48，可能原因為培養方式不同或使用之菌種不同所致。

綜上述可知，燕麥基質在經過桑黃菌固態發酵後可顯著提升其還原能力、固態發酵桑黃菌可較液態發酵提升較多的還原能力及桑黃燕麥熱水萃取物較乙醇萃取物具較佳之還原力。
Fig. 18  Reducing power of hot-water extracts and ethanolic extracts from oat substrate, *Phellinus*-fermented oat and submerged culture of *P. linteus* using air lift fermentor.
Table 20  The IC$_{50}$ of reducing power of hot water extract and ethanolic extract from oat, *Phellinus*-fermented oat and submerged culture of *P. linteus* using air lift fermentor.

<table>
<thead>
<tr>
<th>Samples</th>
<th>IC$_{50}$ (mg/ml)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oat substrate (hot-water extract)</td>
<td>6.39±0.03$^a$</td>
</tr>
<tr>
<td>Oat substrate (ethanol-extract)</td>
<td>3.83±0.08$^d$</td>
</tr>
<tr>
<td><em>Phellinus</em>-fermented oat (hot-water extract)</td>
<td>1.18±0.08$^f$</td>
</tr>
<tr>
<td><em>Phellinus</em>-fermented oat (ethanol-extract)</td>
<td>3.19±0.05$^e$</td>
</tr>
<tr>
<td>Submerged culture (hot-water extract)</td>
<td>4.69±0.03$^c$</td>
</tr>
<tr>
<td>Submerged culture (ethanol-extract)</td>
<td>5.18±0.01$^b$</td>
</tr>
<tr>
<td>BHA (positive control)</td>
<td>29.15×10$^{-3}$</td>
</tr>
<tr>
<td>Ascorbic acid (positive control)</td>
<td>13.03×10$^{-3}$</td>
</tr>
<tr>
<td>α-tocopherol (positive control)</td>
<td>62.83×10$^{-3}$</td>
</tr>
</tbody>
</table>

Values superscribed by different letters in the same column are significantly different (P<0.05). Each value is expressed as mean ± SD (n=3).

* The minimal concentration required to reach OD$_{700}$ of 0.5.
(四) 總抗氧化力測定

ABTS 會與 peroxidase 及 H₂O₂ 反應形成穩定的藍綠色 ABTS・⁺陽離子自由基，於波長 734nm 下具有最大吸光值，加入抗氧化劑可提供電子還原 ABTS・⁺使其吸光值降低或消失，故可利用此一特性測試水溶性樣品清除自由基之能力。樣品與 ABTS・⁺自由基作用後，OD₇₅₄ 下降越多，則表示樣品對 ABTS・⁺自由基之清除能力越強，其抗氧化力愈強。

結果(圖十九)顯示，六種樣品總抗氧化能力皆隨濃度之增加而升高，在低濃度 2 mg/ml 時有 4 組樣品的總抗氧化就快速上升達 50%以上，分別為桑黃燕麥之熱水及乙醇萃取物的總抗氧化力的 82.95%及 77.58%，和發酵液之熱水及乙醇萃取物的 64.27%及 58.87%，而後隨濃度增加其上升趨勢就較為平緩，表示總抗氧化能力已逐漸達最大值。當樣品達最大濃度 10 mg/ml 時，六種樣品的總抗氧化力大小依序為桑黃燕麥(熱水萃取)100%、發酵液(熱水萃取)98.66%、桑黃燕麥(乙醇萃取)94.6%、燕麥基質(熱水萃取)87.98%、發酵液(乙醇萃取)85.31%及燕麥基質(乙醇萃取)78.21%，其中以桑黃燕麥熱水萃取物總抗氧化力最高，其總抗氧化力相當於濃度 97.71 mg/ml 之 Trolox (附圖四十三)，由此可知燕麥基質本身即具有相當程度的總抗氧化力，經桑黃菌發酵後可再提升其總抗氧化能力。六種樣品總抗氧化力之 IC₅₀ 值 (抑制 50% ABTS・⁺活性所需之最低濃度) 結果 (表二十一) 顯示，桑黃燕麥熱水萃取物之 IC₅₀ 值 0.89 mg/ml 顯著 (P < 0.05) 低於其它實驗組，其次為桑黃燕麥乙醇萃取物的 1.09 mg/ml。正對照組 Trolox 之 IC₅₀ 值為 50.12×10⁻³ mg/ml，以上 IC₅₀ 值由線性回歸內插法測定之（附圖三十七~附圖四十三）。

由萃取率換算成樣品達 IC₅₀ 值所需之粉末重之結果(表十八)顯示，熱水萃取組中以桑黃燕麥僅需 1.47 mg (0.89/0.6043) 粉末即可達 IC₅₀ 值所
需的濃度，顯著（P<0.05）低於發酵液所需的 2.79 mg（1.52/0.5432）及燕麥基質的 29.73 mg（5.29/0.1778）粉末。乙醇萃取組中亦以桑黃燕麥需 3.06 mg（1.09/0.3560）粉末即可達 IC50 值所需的濃度，顯著（P<0.05）低於發酵液所需的 6.32 mg（1.77/0.2804）及燕麥基質的 34.88 mg（3.74/0.1072）。

Lee 等人（2007）分析包含桑黃等多種不同真菌之有機溶劑萃取物，由三種具有抗氧化活性之物質，其清除 ABTS·⁺ 陽離子自由基能力之 IC50 介於 1.8~3.1 μM 之間。黃（2008）指出桑黃中草藥複方飲品具有良好的清除 DPPH·自由基清除能力及清除 ABTS·⁺ 之能力。潘（2011）以固態發酵桑黃（P. igniarius）所得桑黃燕麥之熱水萃取物 IC50 為 0.66 mg/ml，與本實驗結果不同可能為桑黃菌種不同所致。

以上四種抗氧化性質分析（DPPH 自由基清除能力、螯合亞鐵離子能力、還原力及總抗氧化能力）之結果，在燕麥基質、桑黃燕麥及氣舉式發酵槽發酵液之熱水及乙醇萃取物中，皆以桑黃燕麥熱水萃取物具有最佳之抗氧化能力。推測桑黃菌（P. linteus）以燕麥基質固態培養時，可較液態深層培養更能產生具有抗氧化作用的物質。燕麥基質中本身就含有 Vitamin A、Vitamin C 和 α-Tocopherol 等抗氧化物質，因此，燕麥本身就具有抗氧化的能力，而再經過桑黃菌發酵後，更可提高其抗氧化性值。爾後研究可進一步做抗氧化成分的分析，探討桑黃菌發酵前後燕麥基質中抗氧化成分的變化及經熱水及乙醇萃取後可得到的抗氧化成分種類。經桑黃菌發酵後的桑黃燕麥可以考慮作為天然之抗氧化劑。亦可用來做為保健食品之素材，幫助人體減少每日所受之氧化傷害。
Fig. 19 Total antioxidant capacity on ABTS·⁺ of hot-water extracts and ethanolic extracts from oat substrate, *Phellinus*-fermented oat and submerged culture of *P. linteus* using air lift fermentor.
<table>
<thead>
<tr>
<th>Samples</th>
<th>( \text{IC}_{50} ) (mg/ml)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oat substrate ( hot-water extract )</td>
<td>5.29±0.03^a</td>
</tr>
<tr>
<td>Oat substrate ( ethanol-extract )</td>
<td>3.74±0.10^b</td>
</tr>
<tr>
<td>\textit{Phellinus}-fermented oat ( hot-water extract )</td>
<td>0.89±0.05^f</td>
</tr>
<tr>
<td>\textit{Phellinus}-fermented oat (ethanol-extract )</td>
<td>1.09±0.03^c</td>
</tr>
<tr>
<td>Submerged culture ( hot-water extract )</td>
<td>1.52±0.06^d</td>
</tr>
<tr>
<td>Submerged culture ( ethanol-extract )</td>
<td>1.77±0.08^c</td>
</tr>
<tr>
<td>Trolox (positive control)</td>
<td>50.12×10^{-3}</td>
</tr>
</tbody>
</table>

Values superscribed by different letters in the same column are significantly different (P<0.05). Each value is expressed as mean ± SD (n=3).

* The minimal concentration required to inhibit 50% activity of ABTS \( \cdot^+ \).
七、癌細胞存活率試驗

本試驗採用 MTT assay 方法來測試燕麥基質、桑黃燕麥及發酵液之熱水及乙醇萃取物等六種樣品對於人類肺腺癌細胞 (A-549)、人類乳癌細胞 (MCF-7) 及人類肝癌細胞 (HepG2) 是否具有抑制其生長的能力。樣品抑制癌細胞能力以癌細胞經過樣品處理 (5%CO₂/37°C/48hr) 後之細胞存活率 (cell viability, %) 表示，抑制能力越強，細胞存活率越低。

（一）樣品萃取物對人類肺腺癌細胞 (A-549) 存活率之影響

圖二十顯示，肺腺癌細胞 (A-549) 細胞存活率皆隨著樣品熱水萃取物濃度增加而降低，但於低濃度 125 μg/ml 時，三種樣品對肺腺癌細胞存活率與未添加樣品之對照組間無顯著差異；當樣品濃度提高至 250 μg/ml 時，桑黃燕麥組其肺腺癌細胞存活率可降低至 68.99% 且顯著 (P < 0.05) 低於對照組，添加濃度 500 μg/ml 時，細胞存活率 58.98% 極顯著 (P < 0.01) 低於對照組。燕麥基質與發酵液組之樣品濃度則分別需提高至 1000 μg/ml 及 500 μg/ml 時，其細胞存活率才會顯著 (P < 0.05) 低於對照組。經濃度 1000 μg/ml 之燕麥基質、桑黃燕麥及發酵液之熱水萃取物處理後，彼等肺腺癌細胞存活率分別為 71.77%、46.29% 及 60.64%（表二十二）。

圖二十一顯示，肺腺癌細胞存活率皆隨著樣品乙醇萃取物濃度增加而降低，於濃度 125~250 μg/ml 時，三種樣品對肺腺癌細胞存活率與對照組之間皆無顯著差異，當濃度提高至 500 μg/ml 時，桑黃燕麥組之細胞存活率 84.35% 方顯著 (P < 0.05) 低於對照組；燕麥基質組在測試濃度 100~1000 μg/ml 其肺腺癌細胞存活率都在 87% 以上，且與對照組之間皆無顯著差異，表示燕麥基質乙醇萃取物對抑製肺腺癌細胞生長效果不佳。經濃度 1000 μg/ml 之燕麥基質、桑黃燕麥及發酵液乙醇萃取物處理後，肺腺癌細胞存活率分別為 87.06%、73.29% 及 73.55%，皆高於熱水萃取組（表二十二）。
表二十二亦指出，肺腺癌細胞經最高測試濃度 1000 μg/ml 之燕麥基質、桑黃燕麥及發酵液之熱水和乙醇萃取物處理後，其細胞存活率以桑黃燕麥熱水萃取組的 46.29% 顯著（P < 0.05）低於其它實驗組。潘（2011）採用 MTT 法測試固態發酵桑黃燕麥(P. igniarius)熱水萃取物對肺腺癌細胞存活率的影響，當以濃度 1000 μg/ml 之樣品處理時肺腺癌細胞的存活率為 47.3%，與本實驗結果相似。圖二十二為肺腺癌細胞經濃度 1000 μg/ml 之桑黃燕麥熱水萃取物處理後（圖二十二-(b)）其細胞數量明顯少於對照組（圖二十二-(a)）之情形。
Fig. 20  Cell viability of A-549 cells treated with various concentrations of hot-water extracts from oat substrate, *Phellinus*-fermented oat and submerged culture of *P. linteus* using air lift fermentor.

Each value is expressed as mean ± SD (n=3).

*Significantly different from control (P<0.05).

**Significantly different from control (P<0.01).
Fig. 21 Cell viability of A-549 cells treated with various concentrations of ethanol-extracts from oat substrate, *Phellinus*-fermented oat and submerged culture of *P. linteus* using air lift fermentor.

Each value is expressed as mean ± SD (n=3).

*Significantly different from control (P<0.05).

**Significantly different from control (P<0.01).
Table 22  Cell viability of A-549 cells treated with hot-water extracts and ethanol-extracts (1000μg/ml) from oat substrate, *Phellinus*-fermented and submerged culture of *P. linteus* using air lift fermentor.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cell viability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oat substrate (hot-water extract)</td>
<td>71.77±1.35&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td>Oat substrate (ethanol-extract)</td>
<td>87.06±4.64&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td><em>Phellinus</em>-fermented oat (hot-water extract)</td>
<td>46.29±2.94&lt;sup&gt;e&lt;/sup&gt;</td>
</tr>
<tr>
<td><em>Phellinus</em>-fermented oat (ethanol-extract)</td>
<td>73.29±1.21&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td>Submerged culture (hot-water extract)</td>
<td>60.64±4.29&lt;sup&gt;d&lt;/sup&gt;</td>
</tr>
<tr>
<td>Submerged culture (ethanol-extract)</td>
<td>73.55±3.81&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td>Control *</td>
<td>100.0±5.64&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

Values superscribed by different letters in the same column are significantly different (P<0.05).
Each value is expressed as mean ± SD (n=3).
* Medium without any added sample.
Inhibitory effect of hot-water extracts (1000 μg/ml, 5% CO\textsubscript{2}/37°C/48hr) from *Phellinus*-fermented oat on growth of A-549 cells. (a) normal A-549 cells, (b) treated A-549 cells. □ = 100μm
（二）樣品萃取物對人類乳癌細胞（MCF-7）存活率之影響

圖二十三顯示，乳癌細胞（MCF-7）細胞存活率皆隨著樣品熱水萃取物濃度增加而降低。其中在經燕麥基質及發酵液組以低濃度 125 μg/ml 處理後，其乳癌細胞存活率與未添加樣品之對照組間並無顯著差異；桑黃燕麥組在添加低濃度 125 μg/ml 時，乳癌細胞存活率就可降低至 73.40% 且顯著（P<0.05）低於對照組，而濃度提高至 500 μg/ml 時，細胞存活率更可降低至 67.18% 且極顯著（P<0.01）低於對照組；燕麥基質與發酵液組其樣品濃度則分別需提高至 1000 μg/ml 及 500 μg/ml 時，細胞存活率才有可能顯著（P<0.05）低於對照組。經濃度 1000 μg/ml 之燕麥基質、桑黃燕麥及發酵液之熱水萃取物處理過後，彼等乳癌細胞存活率分別為 72.22%、55.75% 及 67.27%（表二十三）。

圖二十四顯示，乳癌細胞存活率皆隨著樣品乙醇萃取物濃度增加而降低，於濃度 125 μg/ml 時，三種樣品對乳癌細胞存活率與對照組之間皆無顯著差異；當濃度提高至 250 μg/ml 時，桑黃燕麥組之細胞存活率可降低至 74.89% 且顯著（P<0.05）低於對照組，添加濃度 1000 μg/ml 時，細胞存活率 64.46% 更可極顯著（P<0.01）低於對照組；而燕麥基質與發酵液組其樣品濃度則分別需提高至 1000 μg/ml 及 500 μg/ml 時，其細胞存活率才可顯著（P<0.05）低於對照組。經濃度 1000 μg/ml 之燕麥基質、桑黃燕麥及發酵液之乙醇萃取物處理後，彼等乳癌細胞存活率分別為 87.09%、64.46% 及 70.06%，皆高於熱水萃取組（表二十三）。

表二十三亦指出，乳癌細胞經最高測試濃度 1000 μg/ml 之燕麥基質、桑黃燕麥及發酵液之熱水和乙醇萃取物處理後，其細胞存活率以桑黃燕麥熱水萃取組的 55.75% 顯著（P<0.05）低於其它實驗組。圖二十五為乳癌細胞經濃度 1000 μg/ml 之桑黃燕麥熱水萃取物處理後（圖二十五-(b)）其細胞數量明顯的少於對照組（圖二十五-(a)）之情形。潘（2011）採用 MTT
法測試固態發酵桑黃燕麥(P. igniarius)熱水萃取物對乳癌細胞存活率的影響，當以濃度1000 μg/ml 之樣品處理時肺腺癌細胞的存活率為55.2%，與本實驗結果相似；李等人（2006）採用 MTT 試驗研究桑黃固態發酵多糖（PISPS）對乳癌細胞（MCF-7）存活率為 40.92% 及鄭等人（2007）採用 MTT 法測定桑黃胞外多糖（PIEP）對乳癌細胞（MCF-7）存活率為 49.77%，皆較本實驗所使用熱水萃取桑黃燕麥的 55.75% 為佳，推測可能原因為使用熱水萃取尚未完全萃取出有效抑制癌細胞生長成分所致。
Fig. 23  cell viability of MCF-7 cells treated with various concentrations of hot-water extracts from oat substrate, *Phellinus*-fermented oat and submerged culture of *P. linteus* using air lift fermentor.

Each value is expressed as mean ± SD (n=3).

*Significantly different from control (P<0.05).

**Significantly different from control (P<0.01).
圖二十四 不同濃度燕麥基質、桑黃燕麥和氣舉式發酵槽發酵液之乙醇萃取物對乳癌細胞（MCF-7）存活率之影響

Fig. 24 Cell viability of MCF-7 cells treated with various concentrations of ethanol-extracts from oat substrate, *Phellinus*-fermented oat and submerged culture of *P. linteus* using air lift fermentor.

Each value is expressed as mean ± SD (n=3).

*Significantly different from control (P<0.05).

**Significantly different from control (P<0.01).
表二十三 燕麥基質、桑黃燕麥和氣舉式發酵槽發酵液之熱水及乙醇萃取物（濃度為 1000 μg/ml）對乳癌細胞（MCF-7）存活率之影響

Table 23  Cell viability of MCF-7 cells treated with hot-water extracts and ethanol-extracts (1000μg/ml) from oat substrate, *Phellinus*-fermented and submerged culture of *P. linteus* using air lift fermentor.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cell viability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oat substrate ( hot-water extract )</td>
<td>72.22±3.52^c</td>
</tr>
<tr>
<td>Oat substrate ( ethanol-extract )</td>
<td>87.09±4.83^b</td>
</tr>
<tr>
<td><em>Phellinus</em>-fermented oat ( hot-water extract )</td>
<td>55.75±2.84^d</td>
</tr>
<tr>
<td><em>Phellinus</em>-fermented oat (ethanol-extract )</td>
<td>64.46±3.39^c</td>
</tr>
<tr>
<td>Submerged culture ( hot-water extract )</td>
<td>67.27±3.66^c</td>
</tr>
<tr>
<td>Submerged culture ( ethanol-extract )</td>
<td>70.06±3.40^c</td>
</tr>
<tr>
<td>Control *</td>
<td>100.0±6.27^a</td>
</tr>
</tbody>
</table>

Values superscribed by different letters in the same column are significantly different (P<0.05).
Each value is expressed as mean ± SD (n=3).
* Medium without any added sample.
Inhibitory effect of hot-water extracts (1000 μg/ml, 5% CO₂/37°C/48hr) from *Phellinus*-fermented oat on growth of MCF-7 cells. (a) normal MCF-7 cells, (b) treated MCF-7 cells. ⧫ = 100μm
（三）樣品萃取物對人類肝癌細胞（HepG2）存活率之影響

圖二十六顯示，肝癌細胞（HepG2）細胞存活率皆隨著樣品熱水萃取物濃度增加而降低。於濃度 125~500 μg/ml 時，燕麥基質及發酵液組對肝炎細胞存活率皆與未添加樣品之對照組間無顯著差異；桑黃燕麥組在添加濃度 250 μg/ml 時，肝癌細胞存活率就可降低至 82.79% 且顯著（P<0.05）低於對照組，而濃度提高至 500 μg/ml 時，細胞存活率更可降低至 72.65% 且極顯著（P<0.01）低於對照組；燕麥基質與發酵液組其樣品濃度則需提高至 1000 μg/ml 時，細胞存活率才可顯著低於（P<0.05）對照組。經濃度 1000 μg/ml 之燕麥基質、桑黃燕麥及發酵液之熱水萃取物處理後，彼等肝癌細胞存活率分別為 83.94%、63.33% 及 83.53%（表二十四）。

圖二十七顯示，肝癌細胞存活率皆隨著樣品乙醇萃取物濃度增加而降低，於濃度 125~250 μg/ml 時，三種樣品對肝癌細胞存活率與對照組之間皆無顯著差異；當濃度提高至 500 μg/ml 時，桑黃燕麥組之細胞存活率可降低至 82.37% 且顯著（P<0.05）低於對照組，當以最高濃度 1000 μg/ml 處理後，其細胞存活率可降低至 74.63%；燕麥基質和發酵液組在最高測試濃度 1000 μg/ml 時，其細胞存活率仍高達為 85% 以上，表示燕麥基質和發酵液乙醇萃取物抑制肝癌細胞的效果較差。經濃度 1000 μg/ml 之燕麥基質、桑黃燕麥及發酵液之乙醇萃取物處理過後，彼等肝癌細胞存活率分別為 86.31%、74.63% 及 85.05%，皆高於熱水萃取組（表二十四）。

表二十四亦指出，肝癌細胞存活率經最高測試濃度 1000 μg/ml 之燕麥基質、桑黃燕麥及發酵液之熱水和乙醇萃取物處理後，其細胞存活率以桑黃燕麥熱水萃取組的 63.33% 顯著（P<0.05）低於其它實驗組。圖二十八為肝癌細胞經濃度 1000 μg/ml 之桑黃燕麥熱水萃取物處理後（圖二十八-(b)）其細胞數量明顯的少於對照組（圖二十八-(a)）之情形。潘（2011）採用 MTT 法測試固態發酵桑黃燕麥（P. igniarius）熱水萃取物對乳癌細胞
存活率的影響，當以濃度 1000 μg/ml 之樣品處理時肺腺癌細胞的存活率为 52.4%，較本實驗結果為佳，推测可能原因為菌種不同所致；李等人（2006）採用 MTT 試驗研究桑黃固態發酵多糖（PISPS）對肝癌細胞（HepG2）存活率為 44.61% 及鄭等人（2007）採用 MTT 法測定桑黃胞外多糖（PIEP）對乳癌細胞（MCF-7）存活率為 48.99%，皆較本實驗所使用熱水萃取桑黃燕麥的 63.33% 為佳，推測可能原因為本實驗所使用的樣品為粗萃物，有效成份濃度不足所導致。

綜合以上結果（表二十二~二十四）顯示，三種樣品的熱水萃取物抑制癌細胞生長能力皆優於乙醇萃取物，其中又以桑黃燕麥熱水萃取物對於三種癌細胞的抑制能力最佳，其對肺腺癌細胞、乳癌細胞及肝癌細胞之細胞存活率分別為 46.29%、55.75% 及 63.33%；由此結果亦得知利用固態發酵培養桑黃菌（P. linteus）比液態深層發酵可生產更多具抑制癌細胞生長的代謝物。黃（1998）研究指出多醣體分子量在 3.0×10^4 Da 以上可能具有抗發炎及抗腫瘤作用，本實驗所測得桑黃燕麥之多醣體分子量大多為 4.54×10^4 Da，因此，推測其生物活性與抗發炎及抗腫瘤有關。然而桑黃還含有其他抗腫瘤的物質，例如三萜類（triterpene）、凝集素（agglutinin）、膳食纖維（dietary fiber）等（Wasser and Weis, 1999），因此可能還有除多醣體以外之其他因素使桑黃燕麥具有較佳抑癌效果，例如固態發酵較液態發酵容易代謝產生小分子物質，如 hispolon（酚類衍生物）、genistein 等。有研究指出由桑黃菌（P. linteus）中所分離出的 hispolon，可誘導人類表皮癌 KB 細胞的凋亡（Chen et al., 2006）。genistein 本來常見於豆科植物中，近年來亦從金針菇所分離出（Kang et al., 2003），而 genistein 在肝癌細胞（HepG2）中會調控 Cdc2 激酶的活性，導致細胞週期 G2/M 的停滯，達到抑制癌細胞生長的功效（Chang et al., 2004）。

過去癌症病患往往都接受化學治療，以避免腫瘤細胞的蔓延或轉移，但
如果只是單純接受化學治療室很難完全將腫瘤細胞殺死或抑制腫瘤細胞的轉移且具有較大的副作用。因此，近年來開始有研究人員利用生物性反應修飾（biological response modifiers）的原理輔助化學治療法，也就是以提升個體的免疫能力來對抗腫瘤細胞。由一些研究結果顯示，菇類萃取物與抗癌藥物合併使用，是未來治療癌症的新趨勢，這種治療機轉是值得進一步探討，以達到最佳治療腫瘤的功效（陳，2000）。
Fig. 26  Cell viability of HepG2 cells treated with various concentrations of hot-water extracts from oat substrate, *Phellinus*-fermented oat and submerged culture of *P. linteus* using air lift fermentor.

Each value is expressed as mean ± SD (n=3).

*Significantly different from control (P<0.05).

**Significantly different from control (P<0.01).
Fig. 27  Cell viability of HepG2 cells treated with various concentrations of ethanol-extracts from oat substrate, Phellinus-fermented oat and submerged culture of P. linteus using air lift fermentor.

Each value is expressed as mean ± SD (n=3).

*Significantly different from control (P<0.05).

**Significantly different from control (P<0.01).
燕麥基質、桑黃燕麥和氣舉式發酵槽發酵液之熱水及乙醇萃取物（濃度為 1000 μg/ml）對肝癌細胞（HepG2）存活率之影響

Table 24  Cell viability of HepG2 cells treated with hot-water extracts and ethanol-extracts (1000μg/ml) from oat substrate, *Phellinus*-fermented and submerged culture of *P. linteus* using air lift fermentor.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cell viability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oat substrate ( hot-water extract )</td>
<td>83.94±3.57&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Oat substrate ( ethanol-extract )</td>
<td>86.31±2.01&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Phellinus-fermented oat ( hot-water extract )</td>
<td>63.33±1.72&lt;sup&gt;d&lt;/sup&gt;</td>
</tr>
<tr>
<td>Phellinus-fermented oat (ethanol-extract )</td>
<td>74.63±3.16&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td>Submerged culture ( hot-water extract )</td>
<td>83.53±2.39&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Submerged culture ( ethanol-extract )</td>
<td>85.05±3.38&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Control *</td>
<td>100.0±5.20&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

Values superscribed by different letters in the same column are significantly different (P<0.05).
Each value is expressed as mean ± SD (n=3).
* Medium without any added sample.
圖二十八  肝癌細胞 (HepG2) 經桑黃燕麥熱水萃取物處理（1000 μg/ml·5% CO₂/37°C/48hr）後之抑制細胞生長情形。 (a) 正常 HepG2 細胞株，(b) 處理後 HepG2 細胞株。

Fig. 28  Inhibitory effect of hot-water extracts (1000 μg/ml·5% CO₂/37°C/48hr) from Phellinus-fermented oat on growth of HepG2 cells. (a) normal HepG2 cells，(b) treated HepG2 cells. =100μm
伍、 結論

一、 固態基質種類試驗

本試驗的目的為探討桑黃菌 PL02（*Phellinus linteus*) 在三種不同種類的固態穀物培養基（燕麥、黑豆和薏仁）以 30℃ 培養 20 天其菌絲體生長的情況，以決定固態發酵培養條件試驗時所使用的培養基種類，結果顯示，最適合培養桑黃菌 P. linteus 之固態基質為燕麥，菌絲體產量在第 12 天時可達最高之 494.11 mg/g。

二、 固態發酵培養條件試驗

1. 最適桑黃菌 PL02 菌絲體及多醣體生成之固態培養條件（修飾固態培養基）：水添加量 60%，接菌量 3ml，含 1% fructose，1% yeast extract，0.3% folic acid 及 0.1% NaCl，起始 pH 值 6.0，培養溫度為 30℃。

2. 以最適條件進行培養時間 20 天之固態培養，於培養第 12 天時可達到最高菌絲體（705.30 mg/g）與多醪體（61.73 mg/g）產量，分別增加為基礎培養基最高產量（432.30 mg/g 及 45.48 mg/g）之 1.63 及 1.35 倍。

三、 多醪體分子量之測定

1. 桑黃燕麥多醪之主要分子量（4.54×10⁴Da）大於發酵液多醪分子量（7.28×10³Da），亦比發酵液多醪多了 3.67×10⁵Da 分子量較大的多醪，因此，固態發酵桑黃菌 PL02 生成之桑黃多醪可能較發酵液多醪具有抗腫瘤功效。

2. 燕麥基質經過桑黃菌 PL02 發酵成桑黃燕麥後，原本存在燕麥分子量圖譜之波峰（retention time 5.98 和 8.49 min）消失，而產生了 3.67×10⁵Da（retention time 9.69 min）、4.54×10⁴Da（retention time 11.48 min）及 7.89×
10^3 Da (retention time 12.98 min) 等分子量之多醣體，推測可能因為菌體在生長期間水解燕麥基質中大分子多醣，經桑黃菌發酵後產生的 β-多醣所致，亦有可能為經菌體降解後所殘餘之燕麥多醣體。

四、β-(1→3)-D-glucan 相對含量測定

燕麥基質多醣、桑黃燕麥多醣及氣舉式發酵槽發酵液之胞外多醣中，以桑黃燕麥多醣可得較高 β-(1→3)-D-glucan 相對含量 (29.09 μg/ml LE)，由此結果可以推論不同發酵環境及方式會影響桑黃菌產生 β-(1→3)-D-glucan 的含量，而經由燕麥基質固態培養的桑黃(P. linteus)具有較高之生理活性。

五、抑菌力測定

燕麥基質、桑黃燕麥及氣泡式發酵槽最高胞外多醣生成天數所得發酵液之熱水及乙醇萃取物對於六株測試病原菌皆無明顯之抑菌效果。

六、抗氧化力之測定

燕麥基質、桑黃燕麥及氣舉式發酵槽發酵液乾燥粉末之熱水及乙醇萃取物，在最高測試濃度 (10 mg/ml) 時以桑黃燕麥熱水萃取物具最佳之抗氧化能力，其在 DPPH 自由基清除能力、螯合亞鐵離子能力、還原力及總抗氧化力之 IC_{50} 值分別為 1.23、5.26、1.18 及 0.89 mg/ml 皆顯著 (P < 0.05) 低於其他測試組。
七、癌細胞存活率試驗

燕麥基質、桑黃燕麥及發酵液組之熱水萃取物的抑制癌細胞能力皆優於乙醇萃取物，其中又以桑黃燕麥熱水萃取物對三株癌細胞（A-549、MCF-7及HepG2）的抑制效果最佳，其細胞存活率（46.29、55.75及63.33%）皆顯著（P<0.05）低於其他測試組。由此結果可推測利用固態發酵培養桑黃菌（*P. linteus*）的抑制癌細胞生長的代謝產物。
陸、參考文獻

水野卓，川合正允 編著；賴慶亮 譯。1999。菇類的化學生化學。國立編譯館 台北 台灣。

王培銘。2004。固態發酵製程之微觀與巨觀分析。食品工業。36(10)：11-15。

王薇猗。2006。桑黃生物活性之研究與應用。食品工業。38(5)：25-33。

卯曉嵐。1999。中國大型真菌。鄭州：河南科技出版社。477~479。

吳子瑋。2009。不同型式發酵槽深層培養桑黃菌 Phellinus linteus 生產胞外多醣體之研究。私立東海大學食品科學系研究所碩士論文。

呂淑芳，宮昭雲，傅偉光。2001。靈芝中之水溶性粗多醣分析方法之研究。台灣農業化學與食品科學39(2)：153~161。

呂淑芳。2002。靈芝之機能性與其分析方法。食品工業。34(11)：3-8

李宜明，沈業壽，季俊虯，鄭立軍。2006。桑黃菌質多糖體外抑瘤及抗環磷醯胺致突變的作用。中國科學技術大學學報。36(7)：200~203。

李宜明，賴溢漢。1976。食品分析與檢驗。精華出版社 台中 台灣。

沈葆聖。1993。SAS 統計軟體與資料分析。滄海書局 台中 台灣。

林怡君。2006。探討添加氯化鈉和供氧量對桑黃生産多醣體之影響。
國立中央大學化學工程與材料工程研究所碩士論文。

唐玉玲，溫魯，李芬。2006。猴頭菌絲體中氨基葡萄糖的測定。時珍
國醫國藥。17(12): 2428~2429。

孫淑靜，江玉姬，朱虎，謝寶貴。2005。藥用真菌桑黃的研究現狀。
藥物生物技術。12: 138~140。

徐佳莉。2008。以固態發酵製備桑黃薏仁與桑黃米產品及其呈味性質
與生理活性。國立中興大學食品暨應用生物科技學系研究所碩士
論文。

真野俊樹。2003。天然桑黃抗癌，增強免疫力。安立出版社。台灣。

高木繁。2004。桑黃。青春出版社。台灣。

康名慰。2003。香菇菌種之胞外水溶性多醣體分析。國立交通大學生
物科技研究所碩士論文。

張萬國，胡晉紅，蔡溱。2002。桑黃抗大鼠肝纖維化與抗脂質過氧化。
中成藥，(4): 281~283。

張毅偉。2003。靈芝中具 β-(1→6)分支之(1→3)-β-D-聚葡萄糖之性質
與檢測。國立台灣大學食品科技研究所博士論文。

梁志弘。2009。桑黃之液態培養及其生理活性。國立中興大學食品暨
應用生物科技學系研究所博士論文。

梅谷獻二，加藤肇。1990。農業有用微生物。養賢株式會社。
莫順燕，楊永春，石建功。2003a。桑黃化學成分研究。中國中藥雜誌。28：339~341。

莫順燕，楊永春，石建功。2003b。桑黃黃酮A和B的分離與合成。化學學報。61：1161。

許淳鈞。2004。探討培養基組成對巴西蘑菇發酵生產活性多醣及對其特性之影響。國立中央大學化學工程與材料工程研究所博士論文。

陳品儒。2005。桑黃菌種生物活性之初步探討。私立南台科技大學生物科技研究所碩士論文。

陳建祺。2000。食用菇類在醫藥上的應用。食品工業。32(5): 54~69。

陳柳萌，肖靖，李菁，張誠。2007。桑黃菌的研究進展，19(5): 88~90。江西農業學報。

陳啟楨。2009。桑黃抗癌第一名。元氣齋出版社。台灣。

曾念開，王秋穎，蘇明聲，王懷凱。2007。營養及環境因素對鮑氏針層孔菌菌絲生長的影響。食用菌 4: 6~8。

黃千芳。2008。桑黃飲品及納豆激酶產品之開發。國立嘉義大學食品科學系研究所碩士論文。

黃仁彰。1998。食藥用菇類保健食品之研發。食藥用菇類的培養與應用。食品工業發展研究所 新竹 台灣。

黃惠琴。2001。樟芝菌絲體深層培養之研究。私立東海大學化學工程
研究所碩士論文。

溫魯。2005。用穀物培養食用菌來生產功能食品[J]。食品科學。26 (9) : 574。

路秀玲，趙樹欣。2000。固態發酵中生物量測定方法。天津輕工業學院學報。4 : 57~61。

廖仁宏。2003。固態培養生產靈芝菌絲體之研究。東海大學化學工程學系碩士論文。

齊藤隆，楊耀銘。2004。我們的抗癌完全勝利宣言-20 種菇複合菌絲體及超水溶性、超抗癌作用、超強免疫調節。亞洲商務管理出版社。台灣。

劉金榮，江發壽，李艷，洪成林，曹永翔，趙文斌。1998。藥用真菌桑黃甾類成分的提取和鑑定。農業醫學。20 : 141。

潘詠任。2011。桑黃菌 Phellinus igniarius 固態與液態發酵萃取物生物活性之比較。私立東海大學食品科學系研究所碩士論文。

蔡淑瑤。2002。靈芝與柳松菇抗氧化性質和其對腫瘤細胞之毒性及柳松菇之抗致突變性質。國立中興大學食品暨應用生物科技學系研究所碩士論文。

蔡鎔懋。2008。液態發酵培養基組成對桑黃生產胞外多醣之影響。私立南台科技大學生物科技研究所碩士論文。

鄭立軍，沈業壽，季俊釗，李宜明。2007。桑黃胞外多醣藥理活性的
初步研究。安徽大学学报。28(1): 318~321。

賴進此。2003。菇類活性物質的分離及其應用。食品工業 35(5): 2~10。

戴玉成。2003。藥用擔子菌－鮑氏層孔菌(桑黃)的新認識。中草藥。34: 94。

謝秋蘭。2000。杜仲水萃取物抗氧化機能性之研究。國立中興大學食品暨應用生物科技學系研究所博士論文。

羅國仁，余立文。2004。固態發酵製程的開發與應用。食品工業。36(10): 2~9。

羅國晏。2008。深層培養條件及發酵槽種類對桑黃菌Phellinus igniarius胞外多醣體產量及生物活性之影響。私立東海大學食品科學系研究所碩士論文。


Hwang, H. J., S. W. Kim, J. M. Lim, J. H. Joo, H. O. Kim, H. M. Kim


Lee, I. K. and B. S. Yun. 2007. Highly oxygenated and unsaturated metabolites providing a diversity of hispidin class antioxidants in the


柒、附錄
y = 0.0124x + 0.0599
R^2 = 0.997

Appendix Fig.1  Glucosamine standard curve of Elson-Morgan method.
Appendix Fig. 2  
Standard curve of mycelial dry weight corresponding to glucosamine content.
$y = 9.5x + 0.0284$

$R^2 = 0.9924$

Glucose concentration (mg/ml)

OD$_{490}$

Glucose concentration (mg/ml)

附圖三 阮硫酸法之葡萄糖標準曲線。

Appendix Fig.3 Glucose standard curve by phenol-sulfuric acid method.
y = -0.5071x + 10.479
$R^2 = 0.985$

Retention time (min)
9.00 9.50 10.00 10.50 11.00 11.50 12.00

Log molecular weight (Da)
4.0
4.5
5.0
5.5
6.0

Appendix Fig. 4  Molecular weight standard curve of polysaccharide.
$y = 10.811x + 11.011$

$R^2 = 0.9929$

**Appendix Fig. 5**  Standard curve of laminarin to estimate relative content of $\beta$-(1$\rightarrow$3)-D-glucan.
Ampicillin conc. (μg/ml)

\[ y = 0.0002x + 0.3064 \]

\[ R^2 = 0.9935 \]

Appendix Fig. 6  Standard curve of inhibition zone of *Bacillus cereus* by ampicillin.


\[ y = 0.0001x - 0.0412 \]

\[ R^2 = 0.9924 \]

Ampicillin conc. (µg/ml)

Inhibition zone (cm)

Appendix Fig. 7  Standard curve of inhibition zone of *Pseudomonas aeruginosa* by ampicillin.

附圖七  Ampicillin 對病原菌 *Pseudomonas aeruginosa* (BCRC 10261) 抑菌環之標準曲線。
Ampicillin conc. (µg/ml)

Inhibition zone (cm)

- $y = 0.0035x + 0.4396$
- $R^2 = 0.9901$

Appendix Fig. 8  Standard curve of inhibition zone of *Escherichia coli* by ampicillin.
$y = 0.0052x + 0.6988$

$R^2 = 0.9911$

**Appendix Fig. 9**  Standard curve of inhibition zone of *Salmonella typhimurium* by ampicillin.
$y = 0.0027x + 0.6275$
$R^2 = 0.9897$

Appendix Fig. 10  Standard curve of inhibition zone of *Staphylococcus aureus* by ampicillin.
Ampicillin conc. (µg/ml)

Inhibition zone (cm)

$y = 0.0036x + 0.7081$

$R^2 = 0.9921$

Appendix Fig. 11  Standard curve of inhibition zone of *Listeria monocytogenes* by ampicillin.
附圖十二 燕麥基質熱水萃取物之 DPPH 自由基清除力標準曲線。

Appendix Fig. 12  Standard curve of DPPH · scavenging effect by hot-water extracts from oat substrate.
$y = 8.2633x + 2.2297$
$R^2 = 0.9959$

Appendix Fig. 13  Standard curve of DPPH • scavenging effect by ethanolic extracts from oat substrate.
$y = 38.59x + 2.262$
$R^2 = 0.9945$

**Appendix Fig. 14**  Standard curve of DPPH · scavenging effect by hot-water extracts from *Phellinus*-fermented oat.
y = 15.592x + 3.9962
\( R^2 = 0.9911 \)

Appendix Fig. 15  Standard curve of DPPH · scavenging effect by ethanolic extracts from *Phellinus*-fermented oat.
$y = 28.424x + 4.0419$

$R^2 = 0.9893$

Appendix Fig. 16  Standard curve of DPPH · scavenging effect by hot-water extracts from submerged culture powder.
y = 4.6332x + 3.895
$R^2 = 0.9912$

Appendix Fig. 17  Standard curve of DPPH - scavenging effect by ethanolic extracts from submerged culture powder.
$y = 4.5025x + 3.8866$

$R^2 = 0.9908$

**Appendix Fig. 18** Standard curve of DPPH · scavenging effect by BHA.
Ascorbic acid conc. (µg/ml)

Scavenging effect (%)

$y = 4.6313x + 4.0993$
$R^2 = 0.9912$

Appendix Fig. 19  Standard curve of DPPH · scavenging effect by ascorbic acid.
$y = 2.8535x - 0.0768$

$R^2 = 0.9983$

**Appendix Fig. 20**  
Standard curve of DPPH · scavenging effect by α-tocopherol.
$y = 7.147x + 2.6062$

$R^2 = 0.9957$

**Appendix Fig. 21**  
Standard curve of chelating ability on ferrous ion by hot-water extracts from oat substrate.
$y = 7.5592x + 2.8829$

$R^2 = 0.9898$

Appendix Fig. 22  Standard curve of chelating ability on ferrous ion by ethanolic extracts from oat substrate.
Appendix Fig. 23  Standard curve of chelating ability on ferrous ion by hot-water extracts from *Phellinus*-fermented oat.
$y = 4.728x + 2.417$

$R^2 = 0.9896$

**Appendix Fig. 24**  
Standard curve of chelating ability on ferrous ion by ethanolic extracts from *Phellinus*-fermented oat.
y = 7.9696x + 2.917
$R^2 = 0.9903$

Appendix Fig. 25  Standard curve of chelating ability on ferrous ion by hot-water extracts from submerged culture powder.
Appendix Fig. 26  Standard curve of chelating ability on ferrous ion by ethanolic extracts from submerged culture powder.
$y = 0.9061x + 4.6713$

$R^2 = 0.9911$

*Appendix Fig. 27*  Standard curve of metal chelating ability by EDTA.
$y = 0.0793x - 0.007$

$R^2 = 0.9928$

Appendix Fig. 28   Standard curve of reducing power by hot-water extracts from oat substrate.
附圖二十九 燕麥基質乙醇萃取物之還原力標準曲線。

Appendix Fig. 29 Standard curve of reducing power by ethanolic extracts from oat substrate.
$y = 0.3987x + 0.0296$

$R^2 = 0.9892$

**Appendix Fig. 30** Standard curve of reducing power by hot-water extract from *Phellinus*-fermented oat.
附圖三十一 桑黃燕麥乙醇萃取物之還原力標準曲線。
Appendix Fig. 31 Standard curve of reducing power by ethanolic extracts from *Phellinus*-fermented oat.
附圖三十二  發酵液粉末熱水萃取物之還原力標準曲線。

Appendix Fig. 32  Standard curve of reducing power by hot-water extracts from submerged culture powder.
$y = 0.0878x + 0.0455$

$R^2 = 0.992$

**Appendix Fig. 33** Standard curve of reducing power by ethanolic extracts from f submerged culture powder.
$y = 0.0152x + 0.057$

$R^2 = 0.9949$

BHA conc. (µg/ml)

Reducing power (OD$_{700}$)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

BHA conc. (µg/ml)

0 20 40 60 80 100

Appendix Fig. 34 Standard curve of reducing power by BHA.
$y = 0.0087x - 0.0466$

$R^2 = 0.9922$

**Reducing power (OD$_{700}$)**

**$\alpha$-tocopherol conc. (µg/ml)**

**Appendix Fig. 35** Standard curve of reducing power by $\alpha$-tocopherol.
Ascorbic acid conc. (μg/ml) vs. Reducing power (OD$_{700}$)

$y = 0.0379x + 0.0062$

$R^2 = 0.9987$

Appendix Fig. 36  Standard curve of reducing power by ascorbic acid.
附圖三十七 燕麥基質熱水萃取物之總抗氧化能力標準曲線。

Appendix Fig. 37  Standard curve of total antioxidant capacity by hot-water extracts from oat substrate.

y = 8.7153x + 3.9389
$R^2 = 0.992$
附圖三十八 燕麥基質乙醇萃取物之總抗氧化能力標準曲線。

Appendix Fig. 38 Standard curve of total antioxidant capacity by ethanolic extracts from oat substrate.

\[ y = 12.577x + 2.9758 \]
\[ R^2 = 0.9924 \]
$y = 53.686x + 2.4702$

$R^2 = 0.9903$

**Appendix Fig. 39**  
Standard curve of total antioxidant capacity by hot-water extracts from *Phellinus*-fermented oat.
Appendix Fig. 40  
Standard curve of total antioxidant capacity by ethanolic extracts from *Phellinus*-fermented oat.
Appendix Fig. 41

Standard curve of total antioxidant capacity by hot-water extracts from submerged culture powder.

$y = 32.132x + 1.2958$

$R^2 = 0.9968$
附圖四十二

發酵液粉末乙醇萃取物之總抗氧化能力標準曲線。

Appendix Fig. 42 Standard curve of total antioxidant capacity by ethanolic extracts from submerged culture powder.
$y = 1.0506x - 2.6578$

$R^2 = 0.9932$

**Appendix Fig. 43**  Standard curve of total antioxidant capacity by Trolox.